Verwandte Artikel zu PCA-AdaBoost-LDA Face Recognition Algorithm: A Robust...

PCA-AdaBoost-LDA Face Recognition Algorithm: A Robust Pose, occlusion and Illumination Invariant Face Recognition Algorithm on Low-Resolution Images - Softcover

 
9786202513470: PCA-AdaBoost-LDA Face Recognition Algorithm: A Robust Pose, occlusion and Illumination Invariant Face Recognition Algorithm on Low-Resolution Images

Inhaltsangabe

This book presents a new method to recognize faces with high accuracy for the above aspects. A method with 68 points landmark-based face estimation and image normalization with AdaBoost-LDA for poses and illumination invariant face recognition is proposed. A single training image per person is derived from number of training image samples using average intensity values to reduce memory and execution time. AdaBoost-LDA is used for extraction of feature and classic nearest centre classifier is used for feature classification. Proposed method has successfully handled the illumination conditions, pose variations, and occlusion in low resolution images. Experimental results illustrate the promising performance of presented approach over the current published approaches on LFW, AR and CMU Multi-PIE databases.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 60,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für PCA-AdaBoost-LDA Face Recognition Algorithm: A Robust...

Foto des Verkäufers

Mahmood Ul Haq
ISBN 10: 6202513470 ISBN 13: 9786202513470
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book presents a new method to recognize faces with high accuracy for the above aspects. A method with 68 points landmark-based face estimation and image normalization with AdaBoost-LDA for poses and illumination invariant face recognition is proposed. A single training image per person is derived from number of training image samples using average intensity values to reduce memory and execution time. AdaBoost-LDA is used for extraction of feature and classic nearest centre classifier is used for feature classification. Proposed method has successfully handled the illumination conditions, pose variations, and occlusion in low resolution images. Experimental results illustrate the promising performance of presented approach over the current published approaches on LFW, AR and CMU Multi-PIE databases.Books on Demand GmbH, Überseering 33, 22297 Hamburg 96 pp. Englisch. Artikel-Nr. 9786202513470

Verkäufer kontaktieren

Neu kaufen

EUR 54,90
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb