Verwandte Artikel zu The Equivalence of APN and AB Functions and Their Generaliza...

The Equivalence of APN and AB Functions and Their Generalizations - Softcover

 
9786202311496: The Equivalence of APN and AB Functions and Their Generalizations

Inhaltsangabe

Vectorial Boolean functions are used in cryptography, in particular in block ciphers. An important condition on these functions is a high resistance to the differential and linear cryptanalyses, which are the main attacks on block ciphers. The functions which possess the best resistance to the differential attack are called almost perfect nonlinear (APN). Almost bent (AB) functions are those mappings which oppose an optimum resistance to both linear and differential attacks. Up to this work only a few classes of APN and AB functions had been known and all these classes happened to be extended affine equivalent (EA-equivalent) to power functions. In this work we constructed the first classes of APN and AB polynomials EA-inequivalent to power mappings by using the equivalence relation (which we call CCZ-equivalence). Moreover we show that the number of different classes of AB polynomials EA-inequivalent to power functions is infinite. One of the constructed functions serves as a counterexample for a conjecture about nonexistence of AB functions EA-inequivalent to permutations.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Vectorial Boolean functions are used in cryptography, in particular in block ciphers. An important condition on these functions is a high resistance to the differential and linear cryptanalyses, which are the main attacks on block ciphers. The functions which possess the best resistance to the differential attack are called almost perfect nonlinear (APN). Almost bent (AB) functions are those mappings which oppose an optimum resistance to both linear and differential attacks. Up to this work only a few classes of APN and AB functions had been known and all these classes happened to be extended affine equivalent (EA-equivalent) to power functions. In this work we constructed the first classes of APN and AB polynomials EA-inequivalent to power mappings by using the equivalence relation (which we call CCZ-equivalence). Moreover we show that the number of different classes of AB polynomials EA-inequivalent to power functions is infinite. One of the constructed functions serves as a counterexample for a conjecture about nonexistence of AB functions EA-inequivalent to permutations.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 11,56 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783836494106: The Equivalence of APN and AB Functions and Their Generalizations

Vorgestellte Ausgabe

ISBN 10:  3836494108 ISBN 13:  9783836494106
Verlag: VDM Verlag Dr. Mueller e.K., 2008
Softcover

Suchergebnisse für The Equivalence of APN and AB Functions and Their Generaliza...

Beispielbild für diese ISBN

Budaghyan, Lilya
Verlag: Scholars' Press, 2018
ISBN 10: 6202311495 ISBN 13: 9786202311496
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 92 pages. 8.66x5.91x0.21 inches. In Stock. Artikel-Nr. zk6202311495

Verkäufer kontaktieren

Neu kaufen

EUR 106,05
Währung umrechnen
Versand: EUR 11,56
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb