Verwandte Artikel zu Short-term Rainfall Forecasting using ANNs and ANFIS...

Short-term Rainfall Forecasting using ANNs and ANFIS Models: Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System - Softcover

 
9786202011600: Short-term Rainfall Forecasting using ANNs and ANFIS Models: Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System

Inhaltsangabe

Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting.

Biografía del autor

The author, Pradip M. Kyada has completed his B.Tech (Agri. Engg.) in 2011 from College of Agri. Engg. and Tech., J.A.U., Junagadh (Gujarat). He also obtained M. Tech. (Soil and Water Cons. Engg.) degree in 2013 from GBPUAT, Pantnagar (Uttarakhand). He is working as a Scientist (Agri. Engg.) at Krishi Vigyan Kendra, Bhavnagar (Gujarat), India.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Short-term Rainfall Forecasting using ANNs and ANFIS...

Foto des Verkäufers

Pradip Kyada
ISBN 10: 6202011602 ISBN 13: 9786202011600
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting.Books on Demand GmbH, Überseering 33, 22297 Hamburg 100 pp. Englisch. Artikel-Nr. 9786202011600

Verkäufer kontaktieren

Neu kaufen

EUR 49,90
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kyada, Pradip/ Kumar, Pravendra/ Sojitra, Manoj
ISBN 10: 6202011602 ISBN 13: 9786202011600
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 100 pages. 8.66x5.91x0.23 inches. In Stock. Artikel-Nr. zk6202011602

Verkäufer kontaktieren

Neu kaufen

EUR 87,49
Währung umrechnen
Versand: EUR 11,49
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb