India, which has the most agricultural tillage area in the world, is one of the massive cultivators of crops. Besides, rice and wheat is the main staple food of many Indians. The main purpose of this study is to develop a predictive model on Indian agriculture production. Here, we have used different types of soft computing models like Fuzzy Logic, Statistical Equations, Artificial Neural Network (ANN) and Genetic Algorithm (GA) and tried to develop a hybrid model to get the optimum result. The vital aspect of this proposed prediction model is to achieve improved accuracy. The Prediction performance has been assessed by using error finding equations like Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Average Error.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
B.Tech (Ciencias de la Computación), M.Tech(Ciencias de la Computación), cursando el doctorado, Universidad de KalyaniBengala Occidental, India.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -India, which has the most agricultural tillage area in the world, is one of the massive cultivators of crops. Besides, rice and wheat is the main staple food of many Indians. The main purpose of this study is to develop a predictive model on Indian agriculture production. Here, we have used different types of soft computing models like Fuzzy Logic, Statistical Equations, Artificial Neural Network (ANN) and Genetic Algorithm (GA) and tried to develop a hybrid model to get the optimum result. The vital aspect of this proposed prediction model is to achieve improved accuracy. The Prediction performance has been assessed by using error finding equations like Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Average Error.Books on Demand GmbH, Überseering 33, 22297 Hamburg 60 pp. Englisch. Artikel-Nr. 9786200463340
Anzahl: 2 verfügbar