Microarray technology is used for monitoring thousands of genes at a similar time. This work employs feature selection technique to identify the differently expressed genes by selecting a subset of genes, selecting top ranked genes or removing the redundant genes for better classification model. This work presents the efficiency of three feature selection methods namely one-way ANOVA, Kruskall-Wallis and T-Test for gene selection on three publically available microarray dataset followed by classification of those using Naive Bayes, Binary SVM and Multiclass SVM classification algorithms. The results show the effectiveness of feature selection algorithms on three microarray cancer datasets namely MLL_Leukemia, Lung and SRBCT.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
K. Nirmalakumari è professore assistente (livello III) presso il Dipartimento di ECE, Bannari Amman Institute of Technology, Sathyamangalam.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Microarray technology is used for monitoring thousands of genes at a similar time. This work employs feature selection technique to identify the differently expressed genes by selecting a subset of genes, selecting top ranked genes or removing the redundant genes for better classification model. This work presents the efficiency of three feature selection methods namely one-way ANOVA, Kruskall-Wallis and T-Test for gene selection on three publically available microarray dataset followed by classification of those using Naive Bayes, Binary SVM and Multiclass SVM classification algorithms. The results show the effectiveness of feature selection algorithms on three microarray cancer datasets namely MLL_Leukemia, Lung and SRBCT.Books on Demand GmbH, Überseering 33, 22297 Hamburg 56 pp. Englisch. Artikel-Nr. 9786200434135
Anzahl: 2 verfügbar