This bookk addresses the fault tolerance of RBF networks where all hidden nodes have the same fault rate and their fault probabilities are independent. Assuming that there is a Gaussian distributed noise in the output data, we have derived an objective function for robustly training an RBF network based on the Kullback–Leibler divergence. We also find that for a fault-tolerance regularizer some eigenvalues of the regularization matrix should be negative. For the Tipping’s regularizer and the OLS regularizer, the regularization matrices are positive or semipositive definite. Hence, they cannot efficiently handle the multinode open fault.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This bookk addresses the fault tolerance of RBF networks where all hidden nodes have the same fault rate and their fault probabilities are independent. Assuming that there is a Gaussian distributed noise in the output data, we have derived an objective function for robustly training an RBF network based on the Kullback–Leibler divergence. We also find that for a fault-tolerance regularizer some eigenvalues of the regularization matrix should be negative. For the Tipping’s regularizer and the OLS regularizer, the regularization matrices are positive or semipositive definite. Hence, they cannot efficiently handle the multinode open fault.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This bookk addresses the fault tolerance of RBF networks where all hidden nodes have the same fault rate and their fault probabilities are independent. Assuming that there is a Gaussian distributed noise in the output data, we have derived an objective function for robustly training an RBF network based on the Kullback¿Leibler divergence. We also find that for a fault-tolerance regularizer some eigenvalues of the regularization matrix should be negative. For the Tipping¿s regularizer and the OLS regularizer, the regularization matrices are positive or semipositive definite. Hence, they cannot efficiently handle the multinode open fault.Books on Demand GmbH, Überseering 33, 22297 Hamburg 64 pp. Englisch. Artikel-Nr. 9786200324030
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Fault Tolerance for faults in Artificial Neural Networks | Robust Fault Tolerance for Multinode faults in RBF Neural Networks | Saritha V | Taschenbuch | 64 S. | Englisch | 2019 | LAP LAMBERT Academic Publishing | EAN 9786200324030 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Artikel-Nr. 117570582
Anzahl: 5 verfügbar