Clustering analysis is one of the most commonly used data processing algorithms. Over half a century, K-means remains the most popular clustering algorithm because of its simplicity. Traditional K-means clustering tries to assign n data objects to k clusters starting with random initial centers. However, most of the k- means variants tend to compute distance of each data point to each cluster centroid for every iteration. We propose a fast heuristic to overcome this bottleneck with only marginal increase in Mean Squared Error (MSE). We observe that across all iterations of K-means, a data point changes its membership only among a small subset of clusters. Our heuristic predicts such clusters for each data point by looking at nearby clusters after the first iteration of k-means. We augment well-known variants of k- means like Enhanced K-means and K-means with Triangle Inequality using our heuristic to demonstrate its effectiveness. For various datasets, our heuristic achieves speed-up of up-to 3 times when compared to efficient variants of k-means.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 64 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 33557199/1
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Clustering analysis is one of the most commonly used data processing algorithms. Over half a century, K-means remains the most popular clustering algorithm because of its simplicity. Traditional K-means clustering tries to assign n data objects to k clusters starting with random initial centers. However, most of the k- means variants tend to compute distance of each data point to each cluster centroid for every iteration. We propose a fast heuristic to overcome this bottleneck with only marginal increase in Mean Squared Error (MSE). We observe that across all iterations of K-means, a data point changes its membership only among a small subset of clusters. Our heuristic predicts such clusters for each data point by looking at nearby clusters after the first iteration of k-means. We augment well-known variants of k- means like Enhanced K-means and K-means with Triangle Inequality using our heuristic to demonstrate its effectiveness. For various datasets, our heuristic achieves speed-up of up-to 3 times when compared to efficient variants of k-means.Books on Demand GmbH, Überseering 33, 22297 Hamburg 64 pp. Englisch. Artikel-Nr. 9786139983803
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 8.82x5.98x0.32 inches. In Stock. Artikel-Nr. zk6139983800
Anzahl: 1 verfügbar