Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincare--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincare-Riemann--Hilbert boundary-value problem. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincare--Riemann--Hilbert boundary-value problem allows us to construct effective estimates that describe the behaviour of the zeros of the zeta function very well.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 385853107
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincare--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincare-Riemann--Hilbert boundary-value problem. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincare--Riemann--Hilbert boundary-value problem allows us to construct effective estimates that describe the behaviour of the zeros of the zeta function very well.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 52 pp. Englisch. Artikel-Nr. 9786138825197
Anzahl: 2 verfügbar