This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Counting Polynomial Matrices over Finite Fields | Matrices with Certain Primeness Properties and Applications to Linear Systems and Coding Theory | Julia Lieb | Taschenbuch | 164 S. | Englisch | 2017 | Würzburg University Press | EAN 9783958260641 | Verantwortliche Person für die EU: Julius-Maximilians-Universität, Würzburg University Press - Universitätsbibliothek, Am Hubland 1, 97074 Würzburg, wup[at]uni-wuerzburg[dot]de | Anbieter: preigu. Artikel-Nr. 109725620
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory.Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes.In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.Books on Demand GmbH, Überseering 33, 22297 Hamburg 164 pp. Englisch. Artikel-Nr. 9783958260641
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783958260641_new
Anzahl: Mehr als 20 verfügbar