Verwandte Artikel zu Counting Polynomial Matrices over Finite Fields: Matrices...

Counting Polynomial Matrices over Finite Fields: Matrices with Certain Primeness Properties and Applications to Linear Systems and Coding Theory - Softcover

 
9783958260641: Counting Polynomial Matrices over Finite Fields: Matrices with Certain Primeness Properties and Applications to Linear Systems and Coding Theory

Inhaltsangabe

This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Counting Polynomial Matrices over Finite Fields: Matrices...

Foto des Verkäufers

Julia Lieb
ISBN 10: 3958260640 ISBN 13: 9783958260641
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Counting Polynomial Matrices over Finite Fields | Matrices with Certain Primeness Properties and Applications to Linear Systems and Coding Theory | Julia Lieb | Taschenbuch | 164 S. | Englisch | 2017 | Würzburg University Press | EAN 9783958260641 | Verantwortliche Person für die EU: Julius-Maximilians-Universität, Würzburg University Press - Universitätsbibliothek, Am Hubland 1, 97074 Würzburg, wup[at]uni-wuerzburg[dot]de | Anbieter: preigu. Artikel-Nr. 109725620

Verkäufer kontaktieren

Neu kaufen

EUR 24,90
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Julia Lieb
ISBN 10: 3958260640 ISBN 13: 9783958260641
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory.Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes.In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.Books on Demand GmbH, Überseering 33, 22297 Hamburg 164 pp. Englisch. Artikel-Nr. 9783958260641

Verkäufer kontaktieren

Neu kaufen

EUR 24,90
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lieb, Julia
ISBN 10: 3958260640 ISBN 13: 9783958260641
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783958260641_new

Verkäufer kontaktieren

Neu kaufen

EUR 33,03
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb