Verwandte Artikel zu Study on multiobjective optimization using improved...

Study on multiobjective optimization using improved genetic Algorithm: Methodology and Application - Softcover

 
9783846548899: Study on multiobjective optimization using improved genetic Algorithm: Methodology and Application

Inhaltsangabe

Many real-world problems involve two types of problem difficulty: I) multiple, conflicting objectives and II) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run. The subject of this work is the improvement of multiobjective evolutionary algorithms and their application to engineering problems.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Many real-world problems involve two types of problem difficulty: I) multiple, conflicting objectives and II) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run. The subject of this work is the improvement of multiobjective evolutionary algorithms and their application to engineering problems.

Biografía del autor

A. A. Mosua obtained his PhD in in engineering mathematics from faculty of engineering, Menoufia University, Egypt. He is currently a Lecturer in the Basic Engineering Sciences, Faculty of Engineering, Menoufia University. His research interests are evolutionary multiobjective optimization, mathematical programming, artificial intelligence methods.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Study on multiobjective optimization using improved...

Foto des Verkäufers

Abd Allah A. Mousa
ISBN 10: 3846548898 ISBN 13: 9783846548899
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Many real-world problems involve two types of problem difficulty: I) multiple, conflicting objectives and II) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run. The subject of this work is the improvement of multiobjective evolutionary algorithms and their application to engineering problems.Books on Demand GmbH, Überseering 33, 22297 Hamburg 144 pp. Englisch. Artikel-Nr. 9783846548899

Verkäufer kontaktieren

Neu kaufen

EUR 59,00
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Mousa, Abd Allah A.; Mousa, Abd Allah A.
ISBN 10: 3846548898 ISBN 13: 9783846548899
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 144 pages. 8.66x5.91x0.33 inches. In Stock. Artikel-Nr. __3846548898

Verkäufer kontaktieren

Neu kaufen

EUR 114,04
Währung umrechnen
Versand: EUR 11,53
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Mousa, Abd Allah A.; Mousa, Abd Allah A.
ISBN 10: 3846548898 ISBN 13: 9783846548899
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 144 pages. 8.66x5.91x0.33 inches. In Stock. Artikel-Nr. 3846548898

Verkäufer kontaktieren

Neu kaufen

EUR 119,33
Währung umrechnen
Versand: EUR 11,53
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb