Verwandte Artikel zu Latent Variable Regression Analysis with Missing Covariates:...

Latent Variable Regression Analysis with Missing Covariates: Likelihood-Based Methods and Applications - Softcover

 
9783838321578: Latent Variable Regression Analysis with Missing Covariates: Likelihood-Based Methods and Applications

Inhaltsangabe

Missing data often arises in regression analysis either by study design or stochastic censoring. Restriction of analysis to complete observations may yield biased inferences. Developing likelihood-based methods for analyzing missing data in a regression setting has largely focused on missing values in the dependent variable. In this book, we discuss two likelihood-based approaches to inference for the regression of multivariate categorical outcomes on a set of covariates when some of the covariate values are missing. Specifically, this research seeks to develop methodologies in the context of latent variable models that (i) synthesize multiple outcomes into an latent construct that is easily interpretable yet retains relevant heterogeneity in individual outcomes; (ii) account for measurement inaccuracy in observable outcomes; (iii) model the association between the latent construct and covariates; (iv) handle missing covariate data in both ignorable and nonignorable cases. This book should be of particular interest to psychosocial scientists and others who plan to use latent variables models, but are discouraged by the daunting analytical difficulties associated with missing data.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Missing data often arises in regression analysis either by study design or stochastic censoring. Restriction of analysis to complete observations may yield biased inferences. Developing likelihood-based methods for analyzing missing data in a regression setting has largely focused on missing values in the dependent variable. In this book, we discuss two likelihood-based approaches to inference for the regression of multivariate categorical outcomes on a set of covariates when some of the covariate values are missing. Specifically, this research seeks to develop methodologies in the context of latent variable models that (i) synthesize multiple outcomes into an latent construct that is easily interpretable yet retains relevant heterogeneity in individual outcomes; (ii) account for measurement inaccuracy in observable outcomes; (iii) model the association between the latent construct and covariates; (iv) handle missing covariate data in both ignorable and nonignorable cases. This book should be of particular interest to psychosocial scientists and others who plan to use latent variables models, but are discouraged by the daunting analytical difficulties associated with missing data.

Biografía del autor

Qian-Li Xue, Ph.D.: Studied Biostatistics at the Johns Hopkins University; Assistant Professor of Medicine, Biostatistics at the Johns Hopkins University. Karen Bandeen-Roche, Ph.D.: Studied Operations Research and Industrial Engineering at Cornell University; Hurley Dorrier Professor and Chair of Biostatistics at the Johns Hopkins University.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagLAP Lambert Academic Publishing
  • Erscheinungsdatum2009
  • ISBN 10 383832157X
  • ISBN 13 9783838321578
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten148
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Latent Variable Regression Analysis with Missing Covariates:...

Foto des Verkäufers

Qian Li Xue
ISBN 10: 383832157X ISBN 13: 9783838321578
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Missing data often arises in regression analysis either by study design or stochastic censoring. Restriction of analysis to complete observations may yield biased inferences. Developing likelihood-based methods for analyzing missing data in a regression setting has largely focused on missing values in the dependent variable. In this book, we discuss two likelihood-based approaches to inference for the regression of multivariate categorical outcomes on a set of covariates when some of the covariate values are missing. Specifically, this research seeks to develop methodologies in the context of latent variable models that (i) synthesize multiple outcomes into an latent construct that is easily interpretable yet retains relevant heterogeneity in individual outcomes; (ii) account for measurement inaccuracy in observable outcomes; (iii) model the association between the latent construct and covariates; (iv) handle missing covariate data in both ignorable and nonignorable cases. This book should be of particular interest to psychosocial scientists and others who plan to use latent variables models, but are discouraged by the daunting analytical difficulties associated with missing data.Books on Demand GmbH, Überseering 33, 22297 Hamburg 148 pp. Englisch. Artikel-Nr. 9783838321578

Verkäufer kontaktieren

Neu kaufen

EUR 59,00
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb