Christian Kohler covers the connection between uC and simulation, the interface abstraction as well as the analysis and optimization of coupling systems with the Chip-Hardware-in-the-Loop Simulation (CHILS) approach. He develops the hardware to simulation coupling system with a focus on less hardware effort, the capabilities to couple with different simulation environments, and the efficiency of coupling. Furthermore, the author presents existing concepts to simulate complex systems and compares them with the new approach.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. rer. nat. Christian Köhler completed his doctoral thesis under the supervision of Prof. Dr. sc. techn. Andreas Herkersdorf at the Institute for Integrated Systems, Department of Electrical Engineering and Information Technology, Technische Universität München (TUM).
Using the real Microcontroller (µC) as a replacement for a µC model inside a system simulation of a µC-based system is a big benefit since the µC is already verified. Moreover, its maximum performance and its accuracy are much higher than any simulation model.
With the Chip-Hardware-in-the-Loop Simulation (CHILS) approach, Christian Köhler covers the connection between µC and simulation, the analysis and optimization of such coupling systems as well as the interface abstraction. He develops the hardware to simulation coupling system with a focus on less hardware effort, the capabilities to couple with different simulation environments, and the efficiency of coupling. The interface abstraction primarily supports the efficiency of coupling. The system analysis and optimization concepts include formal criteria to determine the fidelity of Hardware-in-the-Loop (HIL) coupling systems, stability analysis of coupling systems, and the numerical analysis of applied software algorithms. Furthermore, the author presents existing concepts to simulate complex systems and compares them with the new approach.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 2011 edition. 224 pages. 8.27x5.75x0.71 inches. In Stock. Artikel-Nr. x-383481475X
Anzahl: 2 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Artikel-Nr. 9412119/12
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Christian Köhler covers the connection between µC and simulation, the interface abstraction as well as the analysis and optimization of coupling systems with the Chip-Hardware-in-the-Loop Simulation (CHILS) approach. He develops the hardware to simulation coupling system with a focus on less hardware effort, the capabilities to couple with different simulation environments, and the efficiency of coupling. Furthermore, the author presents existing concepts to simulate complex systems and compares them with the new approach.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 248 pp. Englisch. Artikel-Nr. 9783834814753
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Using the real Microcontroller (µC) as a replacement for a µC model inside a system simulation of a µC-based system is a big benefit since the µC is already verified. Moreover, its maximum performance and its accuracy are much higher than any simulation model. With the Chip-Hardware-in-the-Loop Simulation (CHILS) approach, Christian Köhler covers the connection between µC and simulation, the analysis and optimization of such coupling systems as well as the interface abstraction. He develops the hardware to simulation coupling system with a focus on less hardware effort, the capabilities to couple with different simulation environments, and the efficiency of coupling. The interface abstraction primarily supports the efficiency of coupling. The system analysis and optimization concepts include formal criteria to determine the fidelity of Hardware-in-the-Loop (HIL) coupling systems, stability analysis of coupling systems, and the numerical analysis of applied software algorithms. Furthermore, the author presents existing concepts to simulate complex systems and compares them with the new approach. Artikel-Nr. 9783834814753
Anzahl: 1 verfügbar