Two-stage stochastic programming models are considered as attractive tools for making optimal decisions under uncertainty. Traditionally, optimality is formalized by applying statistical parameters such as the expectation or the conditional value at risk to the distributions of objective values. Uwe Gotzes analyzes an approach to account for risk aversion in two-stage models based upon partial orders on the set of real random variables. These stochastic orders enable the incorporation of the characteristics of whole distributions into the decision process. The profit or cost distributions must pass a benchmark test with a given acceptable distribution. Thus, additional objectives can be optimized. For this new class of stochastic optimization problems, results on structure and stability are proven and a tailored algorithm to tackle large problem instances is developed. This implications of the modeling background and numerical results from the application of the proposed algorithm are demonstrated with case studies from energy trading.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Uwe Gotzes completed his doctoral thesis at the Department of Mathematics at the University of Duisburg-Essen. He is a network planner at E.ON Gastransport.
Two-stage stochastic programming models are considered as attractive tools for making optimal decisions under uncertainty. Traditionally, optimality is formalized by applying statistical parameters such as the expectation or the conditional value at risk to the distributions of objective values.
Uwe Gotzes analyzes an approach to account for risk aversion in two-stage models based upon partial orders on the set of real random variables. These stochastic orders enable the incorporation of the characteristics of whole distributions into the decision process. The profit or cost distributions must pass a benchmark test with a given acceptable distribution. Thus, additional objectives can be optimized. For this new class of stochastic optimization problems, results on structure and stability are proven and a tailored algorithm to tackle large problem instances is developed. The implications of the modelling background and numerical results from the application of the proposed algorithm are demonstrated with case studies from energy trading.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut - Neubindung | Seiten: 104 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 5203968/12
Anzahl: 1 verfügbar
Anbieter: Volker Ziesing, Emmingen-Liptingen, Deutschland
Softcover. Zustand: 1. (worldwide shipping & payment): 91 Seiten, 1. Auflage von 2009, kaum Gebrauchsspuren, Versand in das Ausland freigeschaltet, Versandrabatt möglich. Artikel-Nr. M-GO-10521
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Uwe Gotzes analyzes an approach to account for risk aversion in two-stage models based upon partial orders on the set of real random variables. He illustrates the superiority of the proposed decomposition method over standard solvers for example with numerical experiments with instances from energy investment.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 104 pp. Englisch. Artikel-Nr. 9783834808431
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Two-stage stochastic programming models are considered as attractive tools for making optimal decisions under uncertainty. Traditionally, optimality is formalized by applying statistical parameters such as the expectation or the conditional value at risk to the distributions of objective values. Uwe Gotzes analyzes an approach to account for risk aversion in two-stage models based upon partial orders on the set of real random variables. These stochastic orders enable the incorporation of the characteristics of whole distributions into the decision process. The profit or cost distributions must pass a benchmark test with a given acceptable distribution. Thus, additional objectives can be optimized. For this new class of stochastic optimization problems, results on structure and stability are proven and a tailored algorithm to tackle large problem instances is developed. The implications of the modelling background and numerical results from the application of the proposed algorithm are demonstrated with case studies from energy trading. Artikel-Nr. 9783834808431
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783834808431_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 2009 edition. 89 pages. 8.27x5.83x0.39 inches. In Stock. Artikel-Nr. x-3834808431
Anzahl: 2 verfügbar