Contributions to Current Challenges in Mathematical Fluid Mechanics (Advances in Mathematical Fluid Mechanics) - Hardcover

 
9783764371043: Contributions to Current Challenges in Mathematical Fluid Mechanics (Advances in Mathematical Fluid Mechanics)

Inhaltsangabe

This volume consists of five research articles, each dedicated to a significant topic in the mathematical theory of the Navier-Stokes equations, for compressible and incompressible fluids, and to related questions. All results given here are new and represent a noticeable contribution to the subject. One of the most famous predictions of the Kolmogorov theory of turbulence is the so-called Kolmogorov-obukhov five-thirds law. As is known, this law is heuristic and, to date, there is no rigorous justification. The article of A. Biryuk deals with the Cauchy problem for a multi-dimensional Burgers equation with periodic boundary conditions. Estimates in suitable norms for the corresponding solutions are derived for "large" Reynolds numbers, and their relation with the Kolmogorov-Obukhov law are discussed. Similar estimates are also obtained for the Navier-Stokes equation. In the late sixties J. L. Lions introduced a "perturbation" of the Navier­ Stokes equations in which he added in the linear momentum equation the hyper­ dissipative term (-Ll),Bu, f3 ~ 5/4, where Ll is the Laplace operator. This term is referred to as an "artificial" viscosity. Even though it is not physically moti­ vated, artificial viscosity has proved a useful device in numerical simulations of the Navier-Stokes equations at high Reynolds numbers. The paper of of D. Chae and J. Lee investigates the global well-posedness of a modification of the Navier­ Stokes equation similar to that introduced by Lions, but where now the original dissipative term -Llu is replaced by (-Ll)O:u, 0 S Ct < 5/4.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This volume consists of five research articles, each dedicated to a significant topic in the mathematical theory of the Navier-Stokes equations, for compressible and incompressible fluids, and to related questions. All results given here are new and represent a noticeable contribution to the subject. One of the most famous predictions of the Kolmogorov theory of turbulence is the so-called Kolmogorov-obukhov five-thirds law. As is known, this law is heuristic and, to date, there is no rigorous justification. The article of A. Biryuk deals with the Cauchy problem for a multi-dimensional Burgers equation with periodic boundary conditions. Estimates in suitable norms for the corresponding solutions are derived for "large" Reynolds numbers, and their relation with the Kolmogorov-Obukhov law are discussed. Similar estimates are also obtained for the Navier-Stokes equation. In the late sixties J. L. Lions introduced a "perturbation" of the Navier­ Stokes equations in which he added in the linear momentum equation the hyper­ dissipative term (-Ll),Bu, f3 ~ 5/4, where Ll is the Laplace operator. This term is referred to as an "artificial" viscosity. Even though it is not physically moti­ vated, artificial viscosity has proved a useful device in numerical simulations of the Navier-Stokes equations at high Reynolds numbers. The paper of of D. Chae and J. Lee investigates the global well-posedness of a modification of the Navier­ Stokes equation similar to that introduced by Lions, but where now the original dissipative term -Llu is replaced by (-Ll)O:u, 0 S Ct < 5/4.

Reseña del editor

The mathematical theory of the Navier-Stokes equations presents still fundamental open questions that represent as many challenges for the interested mathematicians. This volume collects a series of articles whose objective is to furnish new contributions and ideas to these questions, with particular regard to turbulence modelling, regularity of solutions to the initial-value problem, flow in region with an unbounded boundary and compressible flow.

Contributors:

A. Biryuk

D. Chae and J. Lee

A. Dunca, V. John and W.J. Layton

T. Hishida

T. Leonaviciene and K. Pileckas

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9783034896061: Contributions to Current Challenges in Mathematical Fluid Mechanics (Advances in Mathematical Fluid Mechanics)

Vorgestellte Ausgabe

ISBN 10:  3034896069 ISBN 13:  9783034896061
Verlag: Birkhäuser, 2012
Softcover