Verwandte Artikel zu Ginzburg-Landau Vortices: v. 13 (Progress in Nonlinear...

Ginzburg-Landau Vortices: v. 13 (Progress in Nonlinear Differential Equations and Their Applications) - Hardcover

 
9783764337230: Ginzburg-Landau Vortices: v. 13 (Progress in Nonlinear Differential Equations and Their Applications)

Inhaltsangabe

The mathematics in this book apply directly to classical problems in superconductors, superfluids and liquid crystals. It should be of interest to mathematicians, physicists and engineers working on modern materials research. The text is concerned with the study in two dimensions of stationary solutions uE of a complex valued Ginzburg-Landau equation involving a small parameter E. Such problems are related to questions occuring in physics, such as phase transistion phenomena in superconductors and superfluids. The parameter E has a dimension of a length, which is usually small. Thus, it should be of interest to study the asymptotics as E tends to zero. One of the main results asserts that the limit u* of minimizers uE exists. Moreover, u* is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree - or winding number - of the boundary condition. Each singularity has degree one - or, as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are led to a concept of finite renormalized energy. The location of the singularities is completely determined by minimizing the renormalized energy among all possible configurations of defects. The limit u* can also be viewed as a geometrical object. It is a minimizing harmonic map into S1 with prescribed boundary condition g. Topological obstructions imply that every map u into S1 with u=g on the boundary must have infinite energy. Even though u* has infinite energy one can think of u* as having "less" infinite energy than any other map u with u=g on the boundary. The material presented in this book covers mostly recent and original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations and complex functions. It is designed for researchers and graduate students alike and can be used as a one-semester text.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

The mathematics in this book apply directly to classical problems in superconductors, superfluids and liquid crystals. It should be of interest to mathematicians, physicists and engineers working on modern materials research. The text is concerned with the study in two dimensions of stationary solutions uE of a complex valued Ginzburg-Landau equation involving a small parameter E. Such problems are related to questions occuring in physics, such as phase transistion phenomena in superconductors and superfluids. The parameter E has a dimension of a length, which is usually small. Thus, it should be of interest to study the asymptotics as E tends to zero. One of the main results asserts that the limit u* of minimizers uE exists. Moreover, u* is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree - or winding number - of the boundary condition. Each singularity has degree one - or, as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are led to a concept of finite renormalized energy. The location of the singularities is completely determined by minimizing the renormalized energy among all possible configurations of defects. The limit u* can also be viewed as a geometrical object. It is a minimizing harmonic map into S1 with prescribed boundary condition g. Topological obstructions imply that every map u into S1 with u=g on the boundary must have infinite energy. Even though u* has infinite energy one can think of u* as having "less" infinite energy than any other map u with u=g on the boundary. The material presented in this book covers mostly recent and original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations and complex functions. It is designed for researchers and graduate students alike and can be used as a one-semester text.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagBirkhauser Verlag AG
  • Erscheinungsdatum1994
  • ISBN 10 3764337230
  • ISBN 13 9783764337230
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten192
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Sehr gut
Zustand: Sehr gut | Seiten: 192...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Ginzburg-Landau Vortices: v. 13 (Progress in Nonlinear...

Beispielbild für diese ISBN

Bethuel, Fabrice; Brezis, Haim; Helein, Frederic
Verlag: Birkhäuser Verlag, 1994
ISBN 10: 3764337230 ISBN 13: 9783764337230
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 192 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 41565828/202

Verkäufer kontaktieren

Gebraucht kaufen

EUR 15,54
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Fabrice Helein Frederic Bethuel; Haïm Brézis; Frédéric Hélein
Verlag: Boston, Birkhäuser, 1994
ISBN 10: 3764337230 ISBN 13: 9783764337230
Gebraucht Hardcover

Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-01619 3764337230 Sprache: Englisch Gewicht in Gramm: 550. Artikel-Nr. 2485492

Verkäufer kontaktieren

Gebraucht kaufen

EUR 13,44
Währung umrechnen
Versand: EUR 3,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb