Der Begriff der Splinefunktionen wurde von I. J. Schoenberg 1946 eingefUhrt. "Spline" ist der Name eines Zeichengerates, welches auf mechanischem Weg Interpolatio- aufgaben lost. Dieses Gerat besteht aus einer flexiblen, oft mehrere Meter langen Latte, die auf dem Zeichenbrett aufliegt und dort an bestimmten Stellen durch Gewichte festgehalten wird. Die Form, die die Latte annimmt, hangt von den Elastizitatseigenschaften der Latte abo -, " , , , , , , \ , \ \ I , , , ," -"', , , , , J::>----" , I I , I I I , , , , , , , , , , , " ) Fig. 1: Latteninterpo1ation Po1ynominterpo1ation _ - - - - - - - --0 Wir konnen natUrlich versuchen, ein mathematisches Modell fUr dieses mechanische Zeichengerat zu machen, d. h. die Gestalt solcher Kurven mathematisch zu erfassen. - 2 - Die Theorie der Balkenbiegung verlangt, dass die mittlere 2 K quadratische KrUmmung, ("strain energy", Spannungs- J energie) minimiert wird. Lasst sich die Kurve als Graph einer Funktion f auf dem Intervall [a,b] schreiben, so erhalt man mit dem bekannten Ausdruck fUr die Krlimmung K [f" (t) P --------------dt ~ min (1) t [1 +f' (t)2J5/2 a Statt dieses schwierige Extremalproblem zu losen, begnUgt man sich damit, (2) zu minimieren. Die Extremalfunktion fUr das Funktional (2) ist stUckweise ein kubisches Polynom; die Polyn- stUcke gehen an den Bruchstellen so glatt ineinander Uber, dass die Funktion zweimal stetig differenzierbar ist.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Der Begriff der Splinefunktionen wurde von I. J. Schoenberg 1946 eingefUhrt. "Spline" ist der Name eines Zeichengerates, welches auf mechanischem Weg Interpolatio- aufgaben lost. Dieses Gerat besteht aus einer flexiblen, oft mehrere Meter langen Latte, die auf dem Zeichenbrett aufliegt und dort an bestimmten Stellen durch Gewichte festgehalten wird. Die Form, die die Latte annimmt, hangt von den Elastizitatseigenschaften der Latte abo -, " , , , , , , \ , \ \ I , , , ," -"', , , , , J::>----" , I I , I I I , , , , , , , , , , , " ) Fig. 1: Latteninterpo1ation Po1ynominterpo1ation _ - - - - - - - --0 Wir konnen natUrlich versuchen, ein mathematisches Modell fUr dieses mechanische Zeichengerat zu machen, d. h. die Gestalt solcher Kurven mathematisch zu erfassen. - 2 - Die Theorie der Balkenbiegung verlangt, dass die mittlere 2 K quadratische KrUmmung, ("strain energy", Spannungs- J energie) minimiert wird. Lasst sich die Kurve als Graph einer Funktion f auf dem Intervall [a,b] schreiben, so erhalt man mit dem bekannten Ausdruck fUr die Krlimmung K [f" (t) P --------------dt ~ min (1) t [1 +f' (t)2J5/2 a Statt dieses schwierige Extremalproblem zu losen, begnUgt man sich damit, (2) zu minimieren. Die Extremalfunktion fUr das Funktional (2) ist stUckweise ein kubisches Polynom; die Polyn- stUcke gehen an den Bruchstellen so glatt ineinander Uber, dass die Funktion zweimal stetig differenzierbar ist.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 7,95 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerEUR 13,70 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Deutschland
Broschiert. Zustand: Gut. 184 Seiten; graph. Darst. ; Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel.); leichte altersbedingte Anbräunung des Papiers; der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. Sprache: Deutsch Gewicht in Gramm: 360. Artikel-Nr. 2006137
Anzahl: 2 verfügbar
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. 184 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16090 3764325143 Sprache: Englisch Gewicht in Gramm: 550. Artikel-Nr. 2479552
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783764325145_new
Anzahl: Mehr als 20 verfügbar
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1990 edition. 192 pages. German language. 9.61x6.69x0.44 inches. In Stock. Artikel-Nr. x-3764325143
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Der Begriff der Splinefunktionen wurde von I. J. Schoenberg 1946 eingefUhrt. 'Spline' ist der Name eines Zeichengerates, welches auf mechanischem Weg Interpolatio- aufgaben lost. Dieses Gerat besteht aus einer flexiblen, oft mehrere Meter langen Latte, die auf dem Zeichenbrett aufliegt und dort an bestimmten Stellen durch Gewichte festgehalten wird. Die Form, die die Latte annimmt, hangt von den Elastizitatseigenschaften der Latte abo -, ' , , , , , , , I , , , ,' -'', , , , , J::>----' , I I , I I I , , , , , , , , , , , ' ) Fig. 1: Latteninterpo1ation Po1ynominterpo1ation _ - - - - - - - --0 Wir konnen natUrlich versuchen, ein mathematisches Modell fUr dieses mechanische Zeichengerat zu machen, d. h. die Gestalt solcher Kurven mathematisch zu erfassen. - 2 - Die Theorie der Balkenbiegung verlangt, dass die mittlere 2 K quadratische KrUmmung, ('strain energy', Spannungs- J energie) minimiert wird. Lasst sich die Kurve als Graph einer Funktion f auf dem Intervall [a,b] schreiben, so erhalt man mit dem bekannten Ausdruck fUr die Krlimmung K [f' (t) P --------------dt ~ min (1) t [1 +f' (t)2J5/2 a Statt dieses schwierige Extremalproblem zu losen, begnUgt man sich damit, (2) zu minimieren. Die Extremalfunktion fUr das Funktional (2) ist stUckweise ein kubisches Polynom; die Polyn- stUcke gehen an den Bruchstellen so glatt ineinander Uber, dass die Funktion zweimal stetig differenzierbar ist.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 192 pp. Englisch. Artikel-Nr. 9783764325145
Anzahl: 2 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 155462/202
Anzahl: 4 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 155462/2
Anzahl: 2 verfügbar
Anbieter: Die Buchgeister, Ludwigsburg, BW, Deutschland
Taschenbuch. Zustand: Gut. Aufl. 1990, Bibliotheksexemplar * Einband: leichte Lagerspuren, Buchdeckelinnenseite beschädigt * Schnitt: leicht nachgedunkelt * Seiten: leichte Lesespuren, leicht nachgedunkelt. Artikel-Nr. AN-KIL8-H5VV
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Der Begriff der Splinefunktionen wurde von I. J. Schoenberg 1946 eingefUhrt. 'Spline' ist der Name eines Zeichengerates, welches auf mechanischem Weg Interpolatio- aufgaben lost. Dieses Gerat besteht aus einer flexiblen, oft mehrere Meter langen Latte, die auf dem Zeichenbrett aufliegt und dort an bestimmten Stellen durch Gewichte festgehalten wird. Die Form, die die Latte annimmt, hangt von den Elastizitatseigenschaften der Latte abo -, ' , , , , , , , I , , , ,' -'', , , , , J::----' , I I , I I I , , , , , , , , , , , ' ) Fig. 1: Latteninterpo1ation Po1ynominterpo1ation _ - - - - - - - --0 Wir konnen natUrlich versuchen, ein mathematisches Modell fUr dieses mechanische Zeichengerat zu machen, d. h. die Gestalt solcher Kurven mathematisch zu erfassen. - 2 - Die Theorie der Balkenbiegung verlangt, dass die mittlere 2 K quadratische KrUmmung, ('strain energy', Spannungs- J energie) minimiert wird. Lasst sich die Kurve als Graph einer Funktion f auf dem Intervall [a,b] schreiben, so erhalt man mit dem bekannten Ausdruck fUr die Krlimmung K [f' (t) P --------------dt ~ min (1) t [1 +f' (t)2J5/2 a Statt dieses schwierige Extremalproblem zu losen, begnUgt man sich damit, (2) zu minimieren. Die Extremalfunktion fUr das Funktional (2) ist stUckweise ein kubisches Polynom; die Polyn- stUcke gehen an den Bruchstellen so glatt ineinander Uber, dass die Funktion zweimal stetig differenzierbar ist. Artikel-Nr. 9783764325145
Anzahl: 1 verfügbar