This is the second volume of a set of two devoted to the operator approach to linear problems in hydrodynamics. It presents functional analytical methods applied to the study of small movements and normal oscillations of hydromechanical systems having cavities filled with either ideal or viscous fluids. The second part of the present volume collects nonself-adjoint problems on small motions and normal oscillations of a viscous fluid filling a bounded region.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This is the second volume of a set of two devoted to the operator approach to linear problems in hydrodynamics. It presents functional analytical methods applied to the study of small movements and normal oscillations of hydromechanical systems having cavities filled with either ideal or viscous fluids. The second part of the present volume collects nonself-adjoint problems on small motions and normal oscillations of a viscous fluid filling a bounded region.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,77 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783764321901_new
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 472 pp. Englisch. Artikel-Nr. 9783764321901
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated. Artikel-Nr. 9783764321901
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Presents functional analytical methods applied to the study of small movements and normal oscillations of hydromechanical systems having cavities filled with either ideal or viscous fluids. The book collects nonself-adjoint problems on small motions and normal oscillations of a viscous fluid filling a bounded region. Series: Operator Theory: Advances and Applications. Num Pages: 468 pages, 1 colour illustrations, biography. BIC Classification: PDE; PHDF; TBJ; TGMF. Category: (G) General (US: Trade); (U) Tertiary Education (US: College). Dimension: 234 x 156 x 26. Weight in Grams: 840. . 2003. Hardback. . . . . Books ship from the US and Ireland. Artikel-Nr. V9783764321901
Anzahl: 15 verfügbar