Verwandte Artikel zu Lie symmetry analysis of the Hopf functional-differential...

Lie symmetry analysis of the Hopf functional-differential equation: Lie-Symmetrieanalyse der Hopf-Funktionaldifferentialgleichung: Band 1600 - Softcover

 
9783668058477: Lie symmetry analysis of the Hopf functional-differential equation: Lie-Symmetrieanalyse der Hopf-Funktionaldifferentialgleichung: Band 1600

Inhaltsangabe

Masterarbeit aus dem Jahr 2015 im Fachbereich Ingenieurwissenschaften - Maschinenbau, Note: 1,0, Technische Universität Darmstadt (Fachbereich Maschinenbau, Fachgebiet für Strömungsdynamik, AG Turbulence theory and modelling), Sprache: Deutsch, Abstract: In this paper, we extend the classical Lie symmetry analysis from partial differential equations to integro-differential equations with functional derivatives. We continue the work of OBERLACK and WACŁAWCZYK (2006, Arch. Mech., 58, 597), (2013, J. Math. Phys., 54, 072901) where the extended Lie symmetry analysis is performed in the Fourier space. Here, we introduce a method to perform the extended Lie symmetry analysis in the physical space where we have to deal with the transformation of the integration variable in the appearing integral terms. The method is based on the transformation of the product y(x)dx appearing in the integral terms and applied to the functional formulation of the viscous Burgers equation. The extended Lie symmetry analysis furnishes all known symmetries of the viscous Burgers equation and is able to provide new symmetries associated with the Hopf formulation of the viscous Burgers equation. Hence, it can be employed as an important tool for applications in continuum mechanics.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Masterarbeit aus dem Jahr 2015 im Fachbereich Ingenieurwissenschaften - Maschinenbau, Note: 1,0, Technische Universität Darmstadt (Fachbereich Maschinenbau, Fachgebiet für Strömungsdynamik, AG Turbulence theory and modelling), Sprache: Deutsch, Anmerkungen: Kommentar des Dozenten und Betreuers: "Mit seiner Arbeit hat Herr Janocha wissenschaftliches Neuland betreten. In seiner Arbeit konnte Herr Janocha die mathematischen Hindernisse überwinden und erstmalig die notwendigen sehr aufwändigen und komplexen Rechnungen durchführen. Die Ergebnisse sind von fundamentaler Bedeutung für die Turbulenzforschung und seine Ergebnisse stellen die langfristige wissenschaftliche Basis des Problems der Hopf-Gleichung dar. Die Arbeit hat in einem extrem kurzen Review-Prozess sofort Einzug in die archivierte Literatur gefunden.", Abstract: In this paper, we extend the classical Lie symmetry analysis from partial differential equations to integro-differential equations with functional derivatives. We continue the work of OBERLACK and WACŁAWCZYK (2006, Arch. Mech., 58, 597), (2013, J. Math. Phys., 54, 072901) where the extended Lie symmetry analysis is performed in the Fourier space. Here, we introduce a method to perform the extended Lie symmetry analysis in the physical space where we have to deal with the transformation of the integration variable in the appearing integral terms. The method is based on the transformation of the product y(x)dx appearing in the integral terms and applied to the functional formulation of the viscous Burgers equation. The extended Lie symmetry analysis furnishes all known symmetries of the viscous Burgers equation and is able to provide new symmetries associated with the Hopf formulation of the viscous Burgers equation. Hence, it can be employed as an important tool for applications in continuum mechanics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Lie symmetry analysis of the Hopf functional-differential...

Foto des Verkäufers

Daniel Janocha
Verlag: GRIN Verlag, 2015
ISBN 10: 3668058474 ISBN 13: 9783668058477
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Lie symmetry analysis of the Hopf functional-differential equation | Lie-Symmetrieanalyse der Hopf-Funktionaldifferentialgleichung | Daniel Janocha | Taschenbuch | 40 S. | Deutsch | 2015 | GRIN Verlag | EAN 9783668058477 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Artikel-Nr. 104173254

Verkäufer kontaktieren

Neu kaufen

EUR 17,95
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Daniel Janocha
Verlag: GRIN Verlag, 2015
ISBN 10: 3668058474 ISBN 13: 9783668058477
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Masterarbeit aus dem Jahr 2015 im Fachbereich Ingenieurwissenschaften - Maschinenbau, Note: 1,0, Technische Universität Darmstadt (Fachbereich Maschinenbau, Fachgebiet für Strömungsdynamik, AG Turbulence theory and modelling), Sprache: Deutsch, Abstract: In this paper, we extend the classical Lie symmetry analysis from partial differential equations to integro-differential equations with functional derivatives. We continue the work of OBERLACK and WACLAWCZYK (2006, Arch. Mech., 58, 597), (2013, J. Math. Phys., 54, 072901) where the extended Lie symmetry analysis is performed in the Fourier space.Here, we introduce a method to perform the extended Lie symmetry analysis in the physical space where we have to deal with the transformation of the integration variable in the appearing integral terms. The method is based on the transformation of the product y(x)dx appearing in the integral terms and applied to the functional formulation of the viscous Burgers equation.The extended Lie symmetry analysis furnishes all known symmetries of the viscous Burgers equation and is able to provide new symmetries associated with the Hopf formulation of the viscous Burgers equation. Hence, it can be employed as an important tool for applications in continuum mechanics. Artikel-Nr. 9783668058477

Verkäufer kontaktieren

Neu kaufen

EUR 17,95
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Daniel Janocha
ISBN 10: 3668058474 ISBN 13: 9783668058477
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Masterarbeit aus dem Jahr 2015 im Fachbereich Ingenieurwissenschaften - Maschinenbau, Note: 1,0, Technische Universität Darmstadt (Fachbereich Maschinenbau, Fachgebiet für Strömungsdynamik, AG Turbulence theory and modelling), Sprache: Deutsch, Abstract: In this paper, we extend the classical Lie symmetry analysis from partial differential equations to integro-differential equations with functional derivatives. We continue the work of OBERLACK and WAC¿AWCZYK (2006, Arch. Mech., 58, 597), (2013, J. Math. Phys., 54, 072901) where the extended Lie symmetry analysis is performed in the Fourier space. Here, we introduce a method to perform the extended Lie symmetry analysis in the physical space where we have to deal with the transformation of the integration variable in the appearing integral terms. The method is based on the transformation of the product y(x)dx appearing in the integral terms and applied to the functional formulation of the viscous Burgers equation. The extended Lie symmetry analysis furnishes all known symmetries of the viscous Burgers equation and is able to provide new symmetries associated with the Hopf formulation of the viscous Burgers equation. Hence, it can be employed as an important tool for applications in continuum mechanics.Books on Demand GmbH, Überseering 33, 22297 Hamburg 40 pp. Deutsch. Artikel-Nr. 9783668058477

Verkäufer kontaktieren

Neu kaufen

EUR 17,95
Währung umrechnen
Versand: EUR 1,99
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb