Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Contents: Introduction - Orthogonal Polynomials - Chebyshev and Optimal Polynomials - Orthogonal Polynomials and Krylow Subspaces - Estimating the Spectrum and the Distribution function - Parameter Free Methods - Parameter Dependent Methods - The Stokes Problem - Approximating the A-Norm - Bibliography - Notation - Index
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Polynomial Based Iteration Methods for Symmetric Linear Systems | Bernd Fischer | Taschenbuch | 283 S. | Deutsch | 2013 | Vieweg & Teubner | EAN 9783663111092 | Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, 65189 Wiesbaden, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 105581406
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 284 pp. Deutsch. Artikel-Nr. 9783663111092
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Contents: Introduction - Orthogonal Polynomials - Chebyshev and Optimal Polynomials - Orthogonal Polynomials and Krylow Subspaces - Estimating the Spectrum and the Distribution function - Parameter Free Methods - Parameter Dependent Methods - The Stokes Problem - Approximating the A-Norm - Bibliography - Notation - Index. Artikel-Nr. 9783663111092
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783663111092_new
Anzahl: Mehr als 20 verfügbar