Modellreduktion: Eine systemtheoretisch orientierte Einführung (Springer Studium Mathematik (Master)) - Softcover

Benner, Peter; Faßbender, Heike

 
9783662674925: Modellreduktion: Eine systemtheoretisch orientierte Einführung (Springer Studium Mathematik (Master))

Inhaltsangabe

Dieses Lehrbuch führt konsequent algorithmisch orientiert in die Modellreduktion linearer zeitinvarianter Systeme ein; der Fokus liegt hierbei auf systemtheoretischen Methoden. Insbesondere werden modales und balanciertes Abschneiden eingehend behandelt. Darüber hinaus werden Methoden des Momentenabgleichs, basierend auf Krylovraumverfahren und rationaler Interpolation, diskutiert. Dabei werden alle notwendigen Grundlagen sowohl aus der Systemtheorie als auch aus der numerischen linearen Algebra vorgestellt. Die Illustration der in diesem Buch vorgestellten Verfahren der Modellreduktion, sowie einiger der notwendigen, verwendeten Konzepte aus unterschiedlichen mathematischen Bereichen, erfolgt anhand einer Reihe von numerischen Beispielen. Dazu werden die mathematische Software MATLAB® und einige frei verfügbare Software-Pakete eingesetzt, so dass alle Beispiele nachvollzogen werden können.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Peter Benner ist Direktor am Max-Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg und leitet dort die Abteilung für Numerischen Methoden in der System- und Regelungstheorie. Seine Forschungsinteressen umfassen die numerische lineare und multilineare Algebra, die optimale Steuerung dynamischer Systeme, sowie die System- und Regelungstheorie mit besonderem Fokus auf der Modellreduktion.

Heike Faßbender ist Professorin für Numerische Mathematik an der Technischen Universität Braunschweig und leitet dort das Institut für Numerische Mathematik. Ihre Forschungsinteressen umfassen die numerische (multi-)lineare Algebra, insbesondere (strukturierte) (nicht-)lineare Eigenwertprobleme und nichtlineare Matrixgleichungen, sowie deren Anwendung in der Modellreduktion.

Von der hinteren Coverseite

Dieses Lehrbuch führt konsequent algorithmisch orientiert in die Modellreduktion linearer zeitinvarianter Systeme ein; der Fokus liegt hierbei auf systemtheoretischen Methoden. Insbesondere werden modales und balanciertes Abschneiden eingehend behandelt. Darüber hinaus werden Methoden des Momentenabgleichs basierend auf Krylovraumverfahren und rationaler Interpolation diskutiert. Dabei werden alle notwendigen Grundlagen sowohl aus der Systemtheorie als auch aus der numerischen linearen Algebra vorgestellt. Die Illustration der in diesem Buch vorgestellten Verfahren der Modellreduktion sowie einiger der notwendigen verwendeten Konzepte aus unterschiedlichen mathematischen Bereichen, erfolgt anhand einer Reihe von numerischen Beispielen. Dazu werden die mathematische Software MATLAB® und einige frei verfügbare Software-Pakete eingesetzt, so dass alle Beispiele nachvollzogen werden können.


Die Autoren

Peter Benner ist Direktor am Max-Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg und leitet dort die Abteilung für Numerische Methoden in der System- und Regelungstheorie. Seine Forschungsinteressen umfassen die numerische lineare und multilineare Algebra, die optimale Steuerung dynamischer Systeme, sowie die System- und Regelungstheorie mit besonderem Fokus auf der Modellreduktion.

Heike Faßbender ist Professorin für Numerische Mathematik an der Technischen Universität Braunschweig und leitet dort das Institut für Numerische Mathematik. Ihre Forschungsinteressen umfassen die numerische (multi-)lineare Algebra, insbesondere (strukturierte) (nicht-)lineare Eigenwertprobleme und nichtlineare Matrixgleichungen, sowie deren Anwendung in der Modellreduktion.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.