Dieses Buch könnte interessant für Sie sein, falls Sie über eine solide mathematische Ausbildung verfügen und nun Anwendungsprobleme mit Hilfe von Optimierungsmodellen lösen möchten, ohne sich zuvor jahrelang mit der zugehörigen Theorie zu beschäftigen.
Ein lineares gemischt-ganzzahliges Optimierungsproblem kann heute etwa 500 Milliarden Mal schneller gelöst werden als zu Beginn der 90er Jahre und lässt sich in leicht zu erlernenden Programmiersprachen wie Python formulieren. Da Sie Optimierungsalgorithmen für Real-World-Anwendungen in der Regel nicht selbst schreiben werden, lassen wir diesen Aspekt außen vor und wenden uns stattdessen der wunderschönen Welt der Modellierung zu. Sie lernen, echte Anwendungen in der Sprache der Mathematik zu beschreiben und implementieren alle vorgestellten Modelle in Python, um sie anschließend von bereits existierenden Solvern lösen lassen. Dieses anwendungsnahe Vorgehen soll Sie befähigen, selbst Optimierungsprobleme in der Praxis zu lösen.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Prof. Dr. Nathan Sudermann-Merx ist Professor an der Dualen Hochschule Baden-Württemberg Mannheim und leitet dort den Studiengang "Informatik mit Ausrichtung Machine Learning". In Forschung und Lehre beschäftigt er sich mit mathematischen Modellen im Bereich der Optimierung und des Machine Learnings. Zuvor war er in global agierenden Unternehmen als Experte für Mathematische Optimierung tätig und ist parallel zu seinen akademischen Tätigkeiten weiterhin in Industrieprojekten aktiv.
Dieses Buch könnte interessant für Sie sein, falls Sie über eine solide mathematische Ausbildung verfügen und nun Anwendungsprobleme mit Hilfe von Optimierungsmodellen lösen möchten, ohne sich zuvor jahrelang mit der zugehörigen Theorie zu beschäftigen.
Ein lineares gemischt-ganzzahliges Optimierungsproblem kann heute etwa 500 Milliarden Mal schneller gelöst werden als zu Beginn der 90er Jahre und lässt sich in leicht zu erlernenden Programmiersprachen wie Python formulieren. Da Sie Optimierungsalgorithmen für Real-World-Anwendungen in der Regel nicht selbst schreiben werden, lassen wir diesen Aspekt außen vor und wenden uns stattdessen der wunderschönen Welt der Modellierung zu. Sie lernen, echte Anwendungen in der Sprache der Mathematik zu beschreiben und implementieren alle vorgestellten Modelle in Python, um sie anschließend von bereits existierenden Solvern lösen lassen. Dieses anwendungsnahe Vorgehen soll Sie befähigen, selbst Optimierungsprobleme in der Praxis zu lösen.
Der Autor
Prof. Dr. Nathan Sudermann-Merx ist Professor an der Dualen Hochschule Baden-Württemberg Mannheim und leitet dort den Studiengang "Informatik mit Ausrichtung Machine Learning". In Forschung und Lehre beschäftigt er sich mit mathematischen Modellen im Bereich der Optimierung und des Machine Learnings. Zuvor war er in global agierenden Unternehmen als Experte für Mathematische Optimierung tätig und ist parallel zu seinen akademischen Tätigkeiten weiterhin in Industrieprojekten aktiv.„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieses Buch koennte interessant fuer Sie sein, falls Sie ueber eine solide mathematische Ausbildung verfuegen und nun Anwendungsprobleme mit Hilfe von Optimierungsmodellen loesen moechten, ohne sich zuvor jahrelang mit der zugehoerigen Theorie zu beschaeftigen. Artikel-Nr. 855417238
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Dieses Buch könnte interessant für Sie sein, falls Sie über eine solide mathematische Ausbildung verfügen und nun Anwendungsprobleme mit Hilfe von Optimierungsmodellen lösen möchten, ohne sich zuvor jahrelang mit der zugehörigen Theorie zu beschäftigen.Ein lineares gemischt-ganzzahliges Optimierungsproblem kann heute etwa 500 Milliarden Mal schneller gelöst werden als zu Beginn der 90er Jahre und lässt sich in leicht zu erlernenden Programmiersprachen wie Python formulieren. Da Sie Optimierungsalgorithmen für Real-World-Anwendungen in der Regel nicht selbst schreiben werden, lassen wir diesen Aspekt außen vor und wenden uns stattdessen der wunderschönen Welt der Modellierung zu. Sie lernen, echte Anwendungen in der Sprache der Mathematik zu beschreiben und implementieren alle vorgestellten Modelle in Python, um sie anschließend von bereits existierenden Solvern lösen lassen. Dieses anwendungsnahe Vorgehen soll Sie befähigen, selbst Optimierungsprobleme in der Praxis zu lösen.Springer Spektrum in Springer Science + Business Media, Tiergartenstr. 15-17, 69121 Heidelberg 224 pp. Deutsch. Artikel-Nr. 9783662673805
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Dieses Buch könnte interessant für Sie sein, falls Sie über eine solide mathematische Ausbildung verfügen und nun Anwendungsprobleme mit Hilfe von Optimierungsmodellen lösen möchten, ohne sich zuvor jahrelang mit der zugehörigen Theorie zu beschäftigen.Ein lineares gemischt-ganzzahliges Optimierungsproblem kann heute etwa 500 Milliarden Mal schneller gelöst werden als zu Beginn der 90er Jahre und lässt sich in leicht zu erlernenden Programmiersprachen wie Python formulieren. Da Sie Optimierungsalgorithmenfür Real-World-Anwendungen in der Regel nicht selbst schreiben werden, lassen wir diesen Aspekt außen vor und wenden uns stattdessen der wunderschönen Welt derModellierungzu. Sie lernen, echte Anwendungen in der Sprache der Mathematik zu beschreiben und implementieren alle vorgestellten Modelle in Python, um sie anschließend von bereits existierenden Solvern lösen lassen. Dieses anwendungsnahe Vorgehen soll Sie befähigen, selbst Optimierungsprobleme in der Praxis zu lösen. Artikel-Nr. 9783662673805
Anzahl: 1 verfügbar