Verwandte Artikel zu Prediction and Classification of Respiratory Motion:...

Prediction and Classification of Respiratory Motion: 525 (Studies in Computational Intelligence) - Softcover

 
9783662510643: Prediction and Classification of Respiratory Motion: 525 (Studies in Computational Intelligence)

Inhaltsangabe

This book describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems.

This book presents a customized prediction of respiratory motion with clustering from multiple patient interactions. The proposed method contributes to the improvement of patient treatments by considering breathing pattern for the accurate dose calculation in radiotherapy systems. Real-time tumor-tracking, where the prediction of irregularities becomes relevant, has yet to be clinically established. The statistical quantitative modeling for irregular breathing classification, in which commercial respiration traces are retrospectively categorized into several classes based on breathing pattern are discussed as well. The proposed statistical classification may provide clinical advantages to adjust the dose rate before and during the external beam radiotherapy for minimizing the safety margin.

In the first chapter following the Introduction to this book, we review three prediction approaches of respiratory motion: model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the following chapter, we present a phantom study—prediction of human motion with distributed body sensors—using a Polhemus Liberty AC magnetic tracker. Next we describe respiratory motion estimation with hybrid implementation of extended Kalman filter. The given method assigns the recurrent neural network the role of the predictor and the extended Kalman filter the role of the corrector. After that, we present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction, we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. We have evaluated the new algorithm by comparing the prediction overshoot and thetracking estimation value. The experimental results of 448 patients’ breathing patterns validated the proposed irregular breathing classifier in the last chapter.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

This book describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems.

This book presents a customized prediction of respiratory motion with clustering from multiple patient interactions. The proposed method contributes to the improvement of patient treatments by considering breathing pattern for the accurate dose calculation in radiotherapy systems. Real-time tumor-tracking, where the prediction of irregularities becomes relevant, has yet to be clinically established. The statistical quantitative modeling for irregular breathing classification, in which commercial respiration traces are retrospectively categorized into several classes based on breathing pattern are discussed as well. The proposed statistical classification may provide clinical advantages to adjust the dose rate before and during the external beam radiotherapy for minimizing the safety margin.

In the first chapter following the Introduction to this book, we review three prediction approaches of respiratory motion: model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the following chapter, we present a phantom study—prediction of human motion with distributed body sensors—using a Polhemus Liberty AC magnetic tracker. Next we describe respiratory motion estimation with hybrid implementation of extended Kalman filter. The given method assigns the recurrent neural network the role of the predictor and the extended Kalman filter the role of the corrector. After that, we present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction, we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. We have evaluated the new algorithm by comparing the prediction overshoot and the tracking estimation value. The experimental results of 448 patients’ breathing patterns validated the proposed irregular breathing classifier in the last chapter.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,78 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783642415081: Prediction and Classification of Respiratory Motion: 525 (Studies in Computational Intelligence)

Vorgestellte Ausgabe

ISBN 10:  3642415083 ISBN 13:  9783642415081
Verlag: Springer, 2013
Hardcover

Suchergebnisse für Prediction and Classification of Respiratory Motion:...

Beispielbild für diese ISBN

Lee, Suk Jin; Motai, Yuichi
Verlag: Springer, 2016
ISBN 10: 3662510642 ISBN 13: 9783662510643
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783662510643_new

Verkäufer kontaktieren

Neu kaufen

EUR 115,67
Währung umrechnen
Versand: EUR 13,78
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Yuichi Motai
ISBN 10: 3662510642 ISBN 13: 9783662510643
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems.This book presents a customized prediction of respiratory motion with clustering from multiple patient interactions. The proposed method contributes to the improvement of patient treatments by considering breathing pattern for the accurate dose calculation in radiotherapy systems. Real-time tumor-tracking, where the prediction of irregularities becomes relevant, has yet to be clinically established. The statistical quantitative modeling for irregular breathing classification, in which commercial respiration traces are retrospectively categorized into several classes based on breathing pattern are discussed as well. The proposed statistical classification may provide clinical advantages to adjust the dose rate before and during the external beam radiotherapy for minimizing the safety margin.In the first chapter following the Introduction to this book, we review three prediction approaches of respiratory motion: model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the following chapter, we present a phantom study¿prediction of human motion with distributed body sensors¿using a Polhemus Liberty AC magnetic tracker. Next we describe respiratory motion estimation with hybrid implementation of extended Kalman filter. The given method assigns the recurrent neural network the role of the predictor and the extended Kalman filter the role of the corrector. After that, we present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction, we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. We have evaluated the new algorithm by comparing the prediction overshoot and thetracking estimation value. The experimental results of 448 patients¿ breathing patterns validated the proposed irregular breathing classifier in the last chapter.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 180 pp. Englisch. Artikel-Nr. 9783662510643

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Yuichi Motai
ISBN 10: 3662510642 ISBN 13: 9783662510643
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. This book presents a customized prediction of respiratory motion with clustering from multiple patient interactions. The proposed method contributes to the improvement of patient treatments by considering breathing pattern for the accurate dose calculation in radiotherapy systems. Real-time tumor-tracking, where the prediction of irregularities becomes relevant, has yet to be clinically established. The statistical quantitative modeling for irregular breathing classification, in which commercial respiration traces are retrospectively categorized into several classes based on breathing pattern are discussed as well. The proposed statistical classification may provide clinical advantages to adjust the dose rate before and during the external beam radiotherapy for minimizing the safety margin.In the first chapter following the Introduction to this book, we review three prediction approaches of respiratory motion: model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the following chapter, we present a phantom study-prediction of human motion with distributed body sensors-using a Polhemus Liberty AC magnetic tracker. Next we describe respiratory motion estimation with hybrid implementation of extended Kalman filter. The given method assigns the recurrent neural network the role of the predictor and the extended Kalman filter the role of the corrector. After that, we present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction, we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. We have evaluated the new algorithm by comparing the prediction overshoot and thetracking estimation value. The experimental results of 448 patients' breathing patterns validated the proposed irregular breathing classifier in the last chapter. Artikel-Nr. 9783662510643

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 61,42
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lee, Suk Jin/ Motai, Yuichi
ISBN 10: 3662510642 ISBN 13: 9783662510643
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. reprint edition. 180 pages. 9.25x6.10x0.43 inches. In Stock. Artikel-Nr. x-3662510642

Verkäufer kontaktieren

Neu kaufen

EUR 150,11
Währung umrechnen
Versand: EUR 28,76
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb