Data clustering is a prevalent challenge in big data processing, and parallelizing clustering operations significantly enhances efficiency in applications involving frequent searches. Various clustering techniques are available for data grouping, with CBAR being widely used across different applications. Parallelizing CBAR is essential for big data, and the Hadoop MapReduce platform offers a suitable framework to improve efficiency by leveraging effective segmentation techniques. This book involves designing and implementing algorithms for CBAR using the MapReduce approach, with testing conducted on clusters of up to 4 nodes. The results demonstrate substantial performance gains, which are analyzed and discussed with illustrative examples.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Data clustering is a prevalent challenge in big data processing, and parallelizing clustering operations significantly enhances efficiency in applications involving frequent searches. Various clustering techniques are available for data grouping, with CBAR being widely used across different applications. Parallelizing CBAR is essential for big data, and the Hadoop MapReduce platform offers a suitable framework to improve efficiency by leveraging effective segmentation techniques. This book involves designing and implementing algorithms for CBAR using the MapReduce approach, with testing conducted on clusters of up to 4 nodes. The results demonstrate substantial performance gains, which are analyzed and discussed with illustrative examples.Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. Artikel-Nr. 9783659912757
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783659912757_new
Anzahl: Mehr als 20 verfügbar