This book is proposing a hybrid algorithm of two fuzzy genetic-based machine learning approaches - Michigan and Pittsburgh - for designing fuzzy rule-based classification systems. The search ability of each approach is examined to efficiently find fuzzy rule-based systems with high classification accuracy. These two approaches are combined into a single hybrid algorithm. The generalization ability of fuzzy rule-based classification systems, designed by the proposed hybrid algorithm is examined on real data sets. Experimental results show that the hybrid algorithm has higher search ability within a population of individual rules and within a population of rule sets.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book is proposing a hybrid algorithm of two fuzzy genetic-based machine learning approaches - Michigan and Pittsburgh - for designing fuzzy rule-based classification systems. The search ability of each approach is examined to efficiently find fuzzy rule-based systems with high classification accuracy. These two approaches are combined into a single hybrid algorithm. The generalization ability of fuzzy rule-based classification systems, designed by the proposed hybrid algorithm is examined on real data sets. Experimental results show that the hybrid algorithm has higher search ability within a population of individual rules and within a population of rule sets.
Dr. Lamiaa H. Ahmed is a Lecturer of Computer Science at Modern Academy in Maadi, Cairo, Egypt. Computational Intelligence, Evolutionary Programming, Membrane Computing, Fuzzy Logic, Organic Computing and Java programming language are areas of interest.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 11,53 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 140 pages. 8.66x5.91x0.32 inches. In Stock. Artikel-Nr. 3659891037
Anzahl: 1 verfügbar