Cervical cancer, the second most common cancer globally, is highly curable if detected early. However, rural areas face high mortality rates due to poor resources and limited screening programs. Automated diagnosis can address these gaps by distinguishing abnormal Pap smear cells based on nuclear shape. This study evaluates segmentation methods on the AGMC-TU Pap-Smear dataset, achieving a classification accuracy of 92.83% with SVM Linear and improving to 97.65% using optimized features and the FCM method. Accurate nucleus segmentation is crucial for reliable abnormal cell prediction, enhancing cervical cancer screening efficacy.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Cervical cancer, the second most common cancer globally, is highly curable if detected early. However, rural areas face high mortality rates due to poor resources and limited screening programs. Automated diagnosis can address these gaps by distinguishing abnormal Pap smear cells based on nuclear shape. This study evaluates segmentation methods on the AGMC-TU Pap-Smear dataset, achieving a classification accuracy of 92.83% with SVM Linear and improving to 97.65% using optimized features and the FCM method. Accurate nucleus segmentation is crucial for reliable abnormal cell prediction, enhancing cervical cancer screening efficacy.Books on Demand GmbH, Überseering 33, 22297 Hamburg 72 pp. Englisch. Artikel-Nr. 9783659873713
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783659873713_new
Anzahl: Mehr als 20 verfügbar