In this book we present a new optimization algorithm, the proposed algorithm operates in two phases: in the first one, multiobjective version of genetic algorithm is used as search engine in order to generate approximate true Pareto front. This algorithm based on concept of co-evolution and repair algorithm for handling nonlinear constraints. Also it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. Then, in the second stage, rough set theory is adopted as local search engine in order to improve the spread of the solutions found so far. The results, provided by the proposed algorithm for benchmark problems, are promising when compared with exiting well-known algorithms. Also, our results suggest that our algorithm is better applicable for solving real-world application problems (Economic Environmental Dispatch of Power Systems).
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In this book we present a new optimization algorithm, the proposed algorithm operates in two phases: in the first one, multiobjective version of genetic algorithm is used as search engine in order to generate approximate true Pareto front. This algorithm based on concept of co-evolution and repair algorithm for handling nonlinear constraints. Also it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. Then, in the second stage, rough set theory is adopted as local search engine in order to improve the spread of the solutions found so far. The results, provided by the proposed algorithm for benchmark problems, are promising when compared with exiting well-known algorithms. Also, our results suggest that our algorithm is better applicable for solving real-world application problems (Economic Environmental Dispatch of Power Systems).
Dr. Eng. Mohamed Abd Elsameea Hussein received the B.Sc. degree in Electrical Engineering and M.Sc. ,PhD. in Engineering Mathematics from Faculty of Engineering, Menoufiya University, Egypt. His current research interests include: Evolutionary Multiobjective Optimization,Genetic Algorithms, Rough Set and Numerical Optimization.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 128 pages. 8.66x5.91x0.29 inches. In Stock. Artikel-Nr. 3659846856
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -In this book we present a new optimization algorithm, the proposed algorithm operates in two phases: in the first one, multiobjective version of genetic algorithm is used as search engine in order to generate approximate true Pareto front. This algorithm based on concept of co-evolution and repair algorithm for handling nonlinear constraints. Also it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ¿-dominance. Then, in the second stage, rough set theory is adopted as local search engine in order to improve the spread of the solutions found so far. The results, provided by the proposed algorithm for benchmark problems, are promising when compared with exiting well-known algorithms. Also, our results suggest that our algorithm is better applicable for solving real-world application problems (Economic Environmental Dispatch of Power Systems).Books on Demand GmbH, Überseering 33, 22297 Hamburg 128 pp. Englisch. Artikel-Nr. 9783659846854
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Multiobjective Optimization Based on Rough Set Theory | Methodology and Application | Mohamed Abd Elsameea Hussein (u. a.) | Taschenbuch | 128 S. | Englisch | 2016 | LAP LAMBERT Academic Publishing | EAN 9783659846854 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Artikel-Nr. 103903556
Anzahl: 5 verfügbar