Verwandte Artikel zu Web Usage Mining Using Discovered Frequent Pattern...

Web Usage Mining Using Discovered Frequent Pattern Algorithms: Basics, Steps, Rules, and comparison about algorithms of extracting frequent patterns - Softcover

 
9783659786860: Web Usage Mining Using Discovered Frequent Pattern Algorithms: Basics, Steps, Rules, and comparison about algorithms of extracting frequent patterns

Inhaltsangabe

Developing word of the web and increasing the content information, web site user’s requirements has been changed. Therefore web needs a dynamic and accurate algorithm to recognize user’s requirements to suggest new patterns. Web mining helps to solve the problem of discovering how users are using Web sites. It involves mining logs (or log analysis) and the steps that typically have to be gone through to get meaningful data from Web logs - data collection, pre-processing, data enrichment and pattern analysis and discovery. This book presents methods, approaches and techniques to perform three main tasks of web usage mining (Preprocessing, Pattern discovery and Pattern analysis). In another part of book discussed techniques of WUM to design Web recommender systems and shown that how WUM can be applied to Web server logs for discovering access patterns. The important part of this book discussed about static and dynamic algorithms that build path tree and extract frequent pattern of web user’s. Finally the dynamic algorithm compared together such as CATS-tree, AFPIM, CAN-tree, CP-tree and I-FARM, In terms of time complexity and executed speed.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Developing word of the web and increasing the content information, web site user’s requirements has been changed. Therefore web needs a dynamic and accurate algorithm to recognize user’s requirements to suggest new patterns. Web mining helps to solve the problem of discovering how users are using Web sites. It involves mining logs (or log analysis) and the steps that typically have to be gone through to get meaningful data from Web logs - data collection, pre-processing, data enrichment and pattern analysis and discovery. This book presents methods, approaches and techniques to perform three main tasks of web usage mining (Preprocessing, Pattern discovery and Pattern analysis). In another part of book discussed techniques of WUM to design Web recommender systems and shown that how WUM can be applied to Web server logs for discovering access patterns. The important part of this book discussed about static and dynamic algorithms that build path tree and extract frequent pattern of web user’s. Finally the dynamic algorithm compared together such as CATS-tree, AFPIM, CAN-tree, CP-tree and I-FARM, In terms of time complexity and executed speed.

Biografía del autor

Authors:Farid Soleimani, M.sc: computer software engineering. Young Researcher and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran.Elnaz Ataei, M.A: Accounting. Department of Sciences, Ardabil Branch, Islamic Azad University, Ardabil, Iran.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagLAP LAMBERT Academic Publishing
  • Erscheinungsdatum2015
  • ISBN 10 3659786861
  • ISBN 13 9783659786860
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten132
  • Kontakt zum HerstellerNicht verfügbar

EUR 5,81 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Web Usage Mining Using Discovered Frequent Pattern...

Beispielbild für diese ISBN

Soleimani, Farid; Ataei, Elnaz
ISBN 10: 3659786861 ISBN 13: 9783659786860
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783659786860_new

Verkäufer kontaktieren

Neu kaufen

EUR 59,51
Währung umrechnen
Versand: EUR 5,81
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb