Verwandte Artikel zu Evolutionary Multiobjective Optimization with Gaussian...

Evolutionary Multiobjective Optimization with Gaussian Process Models - Softcover

 
9783659759352: Evolutionary Multiobjective Optimization with Gaussian Process Models

Inhaltsangabe

This book focuses on the field of surrogate-model-based multiobjective evolutionary optimization. It describes the sate-of-the-art concepts and methods, presents various optimization problems and describes current challenges. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This book focuses on the field of surrogate-model-based multiobjective evolutionary optimization. It describes the sate-of-the-art concepts and methods, presents various optimization problems and describes current challenges. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions.

Biografía del autor

Miha Mlakar finished his Ph.D. in Information and Communication Technologies from the Jožef Stefan International Postgraduate School in Ljubljana, Slovenia.He is currently working as a Postdoctoral Associate at Jožef Stefan Insitute, focusing on evolutionary algorithms, optimization, machine learning, data science and industrial applications.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagLAP LAMBERT Academic Publishing
  • Erscheinungsdatum2015
  • ISBN 10 365975935X
  • ISBN 13 9783659759352
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten116
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Evolutionary Multiobjective Optimization with Gaussian...

Foto des Verkäufers

Miha Mlakar
ISBN 10: 365975935X ISBN 13: 9783659759352
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 158247459

Verkäufer kontaktieren

Neu kaufen

EUR 45,45
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb