Verwandte Artikel zu Vedic Mathematics for Binary Applications

Vedic Mathematics for Binary Applications - Softcover

 
9783659543302: Vedic Mathematics for Binary Applications

Inhaltsangabe

Conventional 24x24 multiply architectures are implemented in floating point multipliers using array multipliers, redundant binary architectures( Pipeline Stages), modified booth encoding, a binary tree of 4:2 Compressors (Wallace tree) and modified carry save array in conjunction with Booth's algorithm. There are number of problems associated with tree and array multipliers. Tree multipliers have many problems like shortest logic delay but irregular layouts with complicated interconnects, irregular layouts not only demand more physical design effort, but also introduce significant interconnect delay. Similarly, array multipliers has also some drawbacks associated with them such as they have larger delay and offer regular layout with simpler interconnects. Also significant amount of power consumption as reconfigurability at run time is not provided according to the input bit width. In order to remove the above problems, Urdhvatriyakbhyam algorithm of ancient Indian Vedic Mathematics is utilized. Simulation of 32-bit Floating Point Multiplier and application of Vedic Mathematics is an important part of this dissertation.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Vedic Mathematics for Binary Applications

Foto des Verkäufers

Abhijeet Kumar
ISBN 10: 3659543306 ISBN 13: 9783659543302
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Conventional 24x24 multiply architectures are implemented in floating point multipliers using array multipliers, redundant binary architectures( Pipeline Stages), modified booth encoding, a binary tree of 4:2 Compressors (Wallace tree) and modified carry save array in conjunction with Booth's algorithm. There are number of problems associated with tree and array multipliers. Tree multipliers have many problems like shortest logic delay but irregular layouts with complicated interconnects, irregular layouts not only demand more physical design effort, but also introduce significant interconnect delay. Similarly, array multipliers has also some drawbacks associated with them such as they have larger delay and offer regular layout with simpler interconnects. Also significant amount of power consumption as reconfigurability at run time is not provided according to the input bit width. In order to remove the above problems, Urdhvatriyakbhyam algorithm of ancient Indian Vedic Mathematics is utilized. Simulation of 32-bit Floating Point Multiplier and application of Vedic Mathematics is an important part of this dissertation.Books on Demand GmbH, Überseering 33, 22297 Hamburg 52 pp. Englisch. Artikel-Nr. 9783659543302

Verkäufer kontaktieren

Neu kaufen

EUR 39,90
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Abhijeet Kumar
ISBN 10: 3659543306 ISBN 13: 9783659543302
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 52 pages. 8.66x5.91x0.12 inches. In Stock. Artikel-Nr. 3659543306

Verkäufer kontaktieren

Neu kaufen

EUR 70,67
Währung umrechnen
Versand: EUR 11,49
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb