This monograph treats recent results on limit theorems for superprocesses (SPs). Chapter 1 is devoted to a class of SPs with deterministic immigration, and deals with a convergence problem for rescaled processes. When such an SP with dependent spatial motion (SDSM) is given, under a proper scaling the rescaled SPs converge to an SP with coalescing spatial motion (SCSM) in the sense of probability distribution on the space of measure-valued continuous paths (pdmc). In Chapter 2 we discuss a distinct convergence problem for a class of SDSMs with deterministic immigration rate. When the immigration rate converges to a non-vanishing deterministic one, then we can prove that under a suitable scaling, the rescaled SPs associated with SDSM converge to a class of immigration SPs associated with SCSM in the sense of pdmc. This rescaled limit does not provide only with a new class of SPs but gives also a new type of limit theorem. A class of homogeneous SPs of diffusion type with spatially dependent parameters and its asymptotic behaviors are discussed in Chapter 3. If the underlying diffusion is recurrent, we prove a limit theorem on the moment of such SPs as time t goes to infinity.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This monograph treats recent results on limit theorems for superprocesses (SPs). Chapter 1 is devoted to a class of SPs with deterministic immigration, and deals with a convergence problem for rescaled processes. When such an SP with dependent spatial motion (SDSM) is given, under a proper scaling the rescaled SPs converge to an SP with coalescing spatial motion (SCSM) in the sense of probability distribution on the space of measure-valued continuous paths (pdmc). In Chapter 2 we discuss a distinct convergence problem for a class of SDSMs with deterministic immigration rate. When the immigration rate converges to a non-vanishing deterministic one, then we can prove that under a suitable scaling, the rescaled SPs associated with SDSM converge to a class of immigration SPs associated with SCSM in the sense of pdmc. This rescaled limit does not provide only with a new class of SPs but gives also a new type of limit theorem. A class of homogeneous SPs of diffusion type with spatially dependent parameters and its asymptotic behaviors are discussed in Chapter 3. If the underlying diffusion is recurrent, we prove a limit theorem on the moment of such SPs as time t goes to infinity.
Took his Ph.D. in Probability Theory at University of Tsukuba. Professor at Saitama University, Japan. His field of study: stochastic partial differential equations, white noise analysis, and superprocesses. Author of "Probability and Statistics" (in Japanese) in Math Textbook Ser., Sugakushobo, Tokyo. A member of the Mathematical Society of Japan.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This monograph treats recent results on limit theorems for superprocesses (SPs). Chapter 1 is devoted to a class of SPs with deterministic immigration, and deals with a convergence problem for rescaled processes. When such an SP with dependent spatial motion (SDSM) is given, under a proper scaling the rescaled SPs converge to an SP with coalescing spatial motion (SCSM) in the sense of probability distribution on the space of measure-valued continuous paths (pdmc). In Chapter 2 we discuss a distinct convergence problem for a class of SDSMs with deterministic immigration rate. When the immigration rate converges to a non-vanishing deterministic one, then we can prove that under a suitable scaling, the rescaled SPs associated with SDSM converge to a class of immigration SPs associated with SCSM in the sense of pdmc. This rescaled limit does not provide only with a new class of SPs but gives also a new type of limit theorem. A class of homogeneous SPs of diffusion type with spatially dependent parameters and its asymptotic behaviors are discussed in Chapter 3. If the underlying diffusion is recurrent, we prove a limit theorem on the moment of such SPs as time t goes to infinity.Books on Demand GmbH, Überseering 33, 22297 Hamburg 128 pp. Englisch. Artikel-Nr. 9783659521201
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Limit Theorems for Superprocesses | Rescaled Processes, Immigration Superprocesses and Homogeneous Superprocesses | Isamu Doku | Taschenbuch | 128 S. | Englisch | 2014 | LAP LAMBERT Academic Publishing | EAN 9783659521201 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Artikel-Nr. 105489229
Anzahl: 5 verfügbar