Particle filtering has proven to be an effective localization method for wheeled autonomous vehicles. For a given map, a sensor model, and observations, occasions arise where the vehicle could equally likely be in many locations of the map. Because particle filtering algorithms may generate low confidence pose estimates under these conditions, more robust localization strategies are required to produce reliable pose estimates. In order to eliminate the low confidence estimates produced in certain environments, a multirobot system is designed to introduce mobile environment features. Tracking and controlling a secondary robot introduces a known feature in the environment which can ensure a high confidence estimate. From this knowledge, an autonomous robot can confidently navigate in even the most difficult (featureless) environments.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Particle filtering has proven to be an effective localization method for wheeled autonomous vehicles. For a given map, a sensor model, and observations, occasions arise where the vehicle could equally likely be in many locations of the map. Because particle filtering algorithms may generate low confidence pose estimates under these conditions, more robust localization strategies are required to produce reliable pose estimates. In order to eliminate the low confidence estimates produced in certain environments, a multirobot system is designed to introduce mobile environment features. Tracking and controlling a secondary robot introduces a known feature in the environment which can ensure a high confidence estimate. From this knowledge, an autonomous robot can confidently navigate in even the most difficult (featureless) environments.
He grew up in San Antonio, Texas. He currently resides in Utah with his talented wife and three terrific children. He works as a Robotics Engineer with a focus on Perception Products that can make an impact in Vehicle Automation.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Particle filtering has proven to be an effective localization method for wheeled autonomous vehicles. For a given map, a sensor model, and observations, occasions arise where the vehicle could equally likely be in many locations of the map. Because particle filtering algorithms may generate low confidence pose estimates under these conditions, more robust localization strategies are required to produce reliable pose estimates. In order to eliminate the low confidence estimates produced in certain environments, a multirobot system is designed to introduce mobile environment features. Tracking and controlling a secondary robot introduces a known feature in the environment which can ensure a high confidence estimate. From this knowledge, an autonomous robot can confidently navigate in even the most difficult (featureless) environments.Books on Demand GmbH, Überseering 33, 22297 Hamburg 64 pp. Englisch. Artikel-Nr. 9783659461361
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 64 pages. 8.66x5.91x0.15 inches. In Stock. Artikel-Nr. __3659461369
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 64 pages. 8.66x5.91x0.15 inches. In Stock. Artikel-Nr. 3659461369
Anzahl: 1 verfügbar