Complex data come from different application contexts. In order of handling and manage them, it is important to define suitable representation models which underly the main data features. Another challenge regards analysis systems and data exploration techniques, which support the whole Knowledge Discovery in Databases (KDD) process. Investigating and solving representation problems for complex data and defining proper algorithms and techniques to extract models, patterns and new information from such data in an effective and efficient way are the main challenges which this thesis aims to face. In particular, two main aspects have been investigated, that are the way in which complex data can be modeled (i.e., data modeling), and the way in which homogeneous groups within complex data can be identified (i.e., data clustering). The application contexts that have been objective of such studies are time series data, uncertain data, text data, and biomedical data.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Complex data come from different application contexts. In order of handling and manage them, it is important to define suitable representation models which underly the main data features. Another challenge regards analysis systems and data exploration techniques, which support the whole Knowledge Discovery in Databases (KDD) process. Investigating and solving representation problems for complex data and defining proper algorithms and techniques to extract models, patterns and new information from such data in an effective and efficient way are the main challenges which this thesis aims to face. In particular, two main aspects have been investigated, that are the way in which complex data can be modeled (i.e., data modeling), and the way in which homogeneous groups within complex data can be identified (i.e., data clustering). The application contexts that have been objective of such studies are time series data, uncertain data, text data, and biomedical data.
Giovanni Ponti has been a researcher at ENEA since 2010. He graduated magna cum laude in Computer Engeneering at the University of Calabria in 2005, and obtained his Ph.D. in Computer Engeneering in 2010. His activities concern HPC systems, Cloud Computing and Data Mining. He has coauthored journal articles, conference papers and book chapters.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,46 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Poor. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In poor condition, suitable as a reading copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,450grams, ISBN:9783659305221. Artikel-Nr. 9380050
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Complex data come from different application contexts. In order of handling and manage them, it is important to define suitable representation models which underly the main data features. Another challenge regards analysis systems and data exploration techniques, which support the whole Knowledge Discovery in Databases (KDD) process. Investigating and solving representation problems for complex data and defining proper algorithms and techniques to extract models, patterns and new information from such data in an effective and efficient way are the main challenges which this thesis aims to face. In particular, two main aspects have been investigated, that are the way in which complex data can be modeled (i.e., data modeling), and the way in which homogeneous groups within complex data can be identified (i.e., data clustering). The application contexts that have been objective of such studies are time series data, uncertain data, text data, and biomedical data.Books on Demand GmbH, Überseering 33, 22297 Hamburg 248 pp. Englisch. Artikel-Nr. 9783659305221
Anzahl: 2 verfügbar