Verwandte Artikel zu Algebra II: Noncommutative Rings Identities: 18 (Encyclopaed...

Algebra II: Noncommutative Rings Identities: 18 (Encyclopaedia of Mathematical Sciences) - Softcover

 
9783642729010: Algebra II: Noncommutative Rings Identities: 18 (Encyclopaedia of Mathematical Sciences)

Inhaltsangabe

The algebra of square matrices of size n ~ 2 over the field of complex numbers is, evidently, the best-known example of a non-commutative alge­ 1 bra • Subalgebras and subrings of this algebra (for example, the ring of n x n matrices with integral entries) arise naturally in many areas of mathemat­ ics. Historically however, the study of matrix algebras was preceded by the discovery of quatemions which, introduced in 1843 by Hamilton, found ap­ plications in the classical mechanics of the past century. Later it turned out that quaternion analysis had important applications in field theory. The al­ gebra of quaternions has become one of the classical mathematical objects; it is used, for instance, in algebra, geometry and topology. We will briefly focus on other examples of non-commutative rings and algebras which arise naturally in mathematics and in mathematical physics. The exterior algebra (or Grassmann algebra) is widely used in differential geometry - for example, in geometric theory of integration. Clifford algebras, which include exterior algebras as a special case, have applications in rep­ resentation theory and in algebraic topology. The Weyl algebra (Le. algebra of differential operators with· polynomial coefficients) often appears in the representation theory of Lie algebras. In recent years modules over the Weyl algebra and sheaves of such modules became the foundation of the so-called microlocal analysis. The theory of operator algebras (Le.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

The algebra of square matrices of size n ~ 2 over the field of complex numbers is, evidently, the best-known example of a non-commutative alge­ 1 bra · Subalgebras and subrings of this algebra (for example, the ring of n x n matrices with integral entries) arise naturally in many areas of mathemat­ ics. Historically however, the study of matrix algebras was preceded by the discovery of quatemions which, introduced in 1843 by Hamilton, found ap­ plications in the classical mechanics of the past century. Later it turned out that quaternion analysis had important applications in field theory. The al­ gebra of quaternions has become one of the classical mathematical objects; it is used, for instance, in algebra, geometry and topology. We will briefly focus on other examples of non-commutative rings and algebras which arise naturally in mathematics and in mathematical physics. The exterior algebra (or Grassmann algebra) is widely used in differential geometry - for example, in geometric theory of integration. Clifford algebras, which include exterior algebras as a special case, have applications in rep­ resentation theory and in algebraic topology. The Weyl algebra (Le. algebra of differential operators with· polynomial coefficients) often appears in the representation theory of Lie algebras. In recent years modules over the Weyl algebra and sheaves of such modules became the foundation of the so-called microlocal analysis. The theory of operator algebras (Le.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2011
  • ISBN 10 3642729010
  • ISBN 13 9783642729010
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten248
  • HerausgeberKostrikin A.I., Shafarevich I.R.
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Algebra II: Noncommutative Rings Identities: 18 (Encyclopaed...

Foto des Verkäufers

Kostrikin, A. I.|Shafarevich, I. R.|Bakhturin, Y. A.|Bokhut, L. A.|Kharchenko, V. K.|L\'vov, I. V.|Ol\'shanskij, A.Yu.
ISBN 10: 3642729010 ISBN 13: 9783642729010
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 5069162

Verkäufer kontaktieren

Neu kaufen

EUR 48,74
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

I. R. Shafarevich
ISBN 10: 3642729010 ISBN 13: 9783642729010
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The algebra of square matrices of size n ~ 2 over the field of complex numbers is, evidently, the best-known example of a non-commutative alge 1 bra - Subalgebras and subrings of this algebra (for example, the ring of n x n matrices with integral entries) arise naturally in many areas of mathemat ics. Historically however, the study of matrix algebras was preceded by the discovery of quatemions which, introduced in 1843 by Hamilton, found ap plications in the classical mechanics of the past century. Later it turned out that quaternion analysis had important applications in field theory. The al gebra of quaternions has become one of the classical mathematical objects; it is used, for instance, in algebra, geometry and topology. We will briefly focus on other examples of non-commutative rings and algebras which arise naturally in mathematics and in mathematical physics. The exterior algebra (or Grassmann algebra) is widely used in differential geometry - for example, in geometric theory of integration. Clifford algebras, which include exterior algebras as a special case, have applications in rep resentation theory and in algebraic topology. The Weyl algebra (Le. algebra of differential operators with polynomial coefficients) often appears in the representation theory of Lie algebras. In recent years modules over the Weyl algebra and sheaves of such modules became the foundation of the so-called microlocal analysis. The theory of operator algebras (Le. Artikel-Nr. 9783642729010

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2011
ISBN 10: 3642729010 ISBN 13: 9783642729010
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783642729010_new

Verkäufer kontaktieren

Neu kaufen

EUR 62,07
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kostrikin, A.I. (Editor) / Shafarevich, I.R. (Editor)
Verlag: Springer-Verlag, 2011
ISBN 10: 3642729010 ISBN 13: 9783642729010
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. reprint edition. 241 pages. 9.20x6.10x0.60 inches. In Stock. Artikel-Nr. x-3642729010

Verkäufer kontaktieren

Neu kaufen

EUR 79,51
Währung umrechnen
Versand: EUR 11,86
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb