1. Our essential objective is the study of the linear, non-homogeneous problems: (1) Pu = I in CD, an open set in RN, (2) fQjtl = gj on am (boundary of m), lor on a subset of the boundm"J am 1 < f < v, where Pis a linear differential operator in m and where the Q/s are linear differential operators on am. In Volumes 1 and 2, we studied, for particular c1asses of systems {P, Qj}, problem (1), (2) in c1asses of Sobolev spaces (in general constructed starting from P) of positive integer or (by interpolation) non-integer order; then, by transposition, in c1asses of Sobolev spaces of negative order, until, by passage to the limit on the order, we reached the spaces of distributions of finite order. In this volume, we study the analogous problems in spaces of inlinitely dilferentiable or analytic Itlnctions or of Gevrey-type I~mctions and by duality, in spaces 01 distribtltions, of analytic Itlnctionals or of Gevrey type ultra-distributions. In this manner, we obtain a c1ear vision (at least we hope so) of the various possible formulations of the boundary value problems (1), (2) for the systems {P, Qj} considered here.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
1. Our essential objective is the study of the linear, non-homogeneous problems: (1) Pu = I in CD, an open set in RN, (2) fQjtl = gj on am (boundary of m), lor on a subset of the boundm"J am 1 < f < v, where Pis a linear differential operator in m and where the Q/s are linear differential operators on am. In Volumes 1 and 2, we studied, for particular c1asses of systems {P, Qj}, problem (1), (2) in c1asses of Sobolev spaces (in general constructed starting from P) of positive integer or (by interpolation) non-integer order; then, by transposition, in c1asses of Sobolev spaces of negative order, until, by passage to the limit on the order, we reached the spaces of distributions of finite order. In this volume, we study the analogous problems in spaces of inlinitely dilferentiable or analytic Itlnctions or of Gevrey-type I~mctions and by duality, in spaces 01 distribtltions, of analytic Itlnctionals or of Gevrey type ultra-distributions. In this manner, we obtain a c1ear vision (at least we hope so) of the various possible formulations of the boundary value problems (1), (2) for the systems {P, Qj} considered here.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. S0-9783642653957
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Non-Homogeneous Boundary Value Problems and Applications | Volume III | Jacques Louis Lions (u. a.) | Taschenbuch | xii | Englisch | 2011 | Springer | EAN 9783642653957 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 106366945
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -1. Our essential objective is the study of the linear, non-homogeneous problems: (1) Pu = I in CD, an open set in RN, (2) fQjtl = gj on am (boundary of m), lor on a subset of the boundm'J am 1Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 328 pp. Englisch. Artikel-Nr. 9783642653957
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 1. Our essential objective is the study of the linear, non-homogeneous problems: (1) Pu = I in CD, an open set in RN, (2) fQjtl = gj on am (boundary of m), lor on a subset of the boundm'J am 1 f v, where Pis a linear differential operator in m and where the Q/s are linear differential operators on am. In Volumes 1 and 2, we studied, for particular c1asses of systems {P, Qj}, problem (1), (2) in c1asses of Sobolev spaces (in general constructed starting from P) of positive integer or (by interpolation) non-integer order; then, by transposition, in c1asses of Sobolev spaces of negative order, until, by passage to the limit on the order, we reached the spaces of distributions of finite order. In this volume, we study the analogous problems in spaces of inlinitely dilferentiable or analytic Itlnctions or of Gevrey-type I~mctions and by duality, in spaces 01 distribtltions, of analytic Itlnctionals or of Gevrey type ultra-distributions. In this manner, we obtain a c1ear vision (at least we hope so) of the various possible formulations of the boundary value problems (1), (2) for the systems {P, Qj} considered here. Artikel-Nr. 9783642653957
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 326 pages. 8.98x5.98x0.71 inches. In Stock. Artikel-Nr. x-3642653952
Anzahl: 2 verfügbar