Neurofuzzy and fuzzyneural techniques as tools of studying and analyzing complex problems are relatively new even though neural networks and fuzzy logic systems have been applied as computational intelligence structural e- ments for the last 40 years. Computational intelligence as an independent sci- tific field has grown over the years because of the development of these str- tural elements. Neural networks have been revived since 1982 after the seminal work of J. J. Hopfield and fuzzy sets have found a variety of applications since the pub- cation of the work of Lotfi Zadeh back in 1965. Artificial neural networks (ANN) have a large number of highly interconnected processing elements that usually operate in parallel and are configured in regular architectures. The c- lective behavior of an ANN, like a human brain, demonstrates the ability to learn,recall,and generalize from training patterns or data. The performance of neural networks depends on the computational function of the neurons in the network,the structure and topology of the network,and the learning rule or the update rule of the connecting weights. This concept of trainable neural n- works further strengthens the idea of utilizing the learning ability of neural networks to learn the fuzzy control rules,the membership functions and other parameters of a fuzzy logic control or decision systems,as we will explain later on,and this becomes the advantage of using a neural based fuzzy logic system in our analysis. On the other hand,fuzzy systems are structured numerical estimators.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This highly interdisciplinary book covers for the first time the applications of neurofuzzy and fuzzyneural scientific tools in a very wide area within the communications field. It deals with the important and modern areas of telecommunications amenable to such a treatment. Therefore, it is of interest to researchers and graduate students as well as practising engineers.
Integration of Neural and Fuzzy
Neuro-Fuzzy Applications in Speech Coding and Recognition
Image/Video Compression Using Neuro-Fuzzy Techniques
A Neuro-Fuzzy System for Source Location and Tracking in Wireless Communications
Fuzzy Neural Applications in Handoff
An Application of Neuro Fuzzy Systems for Access Control in Asynchronous Transfer Mode Networks
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,72 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783642622816_new
Anzahl: Mehr als 20 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Neuro-Fuzzy and Fuzzy-Neural Applications in Telecommunications | Peter Stavroulakis | Taschenbuch | xviii | Englisch | 2012 | Springer | EAN 9783642622816 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 105986014
Anzahl: 5 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Neurofuzzy and fuzzyneural techniques as tools of studying and analyzing complex problems are relatively new even though neural networks and fuzzy logic systems have been applied as computational intelligence structural e- ments for the last 40 years. Computational intelligence as an independent sci- tific field has grown over the years because of the development of these str- tural elements. Neural networks have been revived since 1982 after the seminal work of J. J. Hopfield and fuzzy sets have found a variety of applications since the pub- cation of the work of Lotfi Zadeh back in 1965. Artificial neural networks (ANN) have a large number of highly interconnected processing elements that usually operate in parallel and are configured in regular architectures. The c- lective behavior of an ANN, like a human brain, demonstrates the ability to learn,recall,and generalize from training patterns or data. The performance of neural networks depends on the computational function of the neurons in the network,the structure and topology of the network,and the learning rule or the update rule of the connecting weights. This concept of trainable neural n- works further strengthens the idea of utilizing the learning ability of neural networks to learn the fuzzy control rules,the membership functions and other parameters of a fuzzy logic control or decision systems,as we will explain later on,and this becomes the advantage of using a neural based fuzzy logic system in our analysis. On the other hand,fuzzy systems are structured numerical estimators. Artikel-Nr. 9783642622816
Anzahl: 1 verfügbar