Verwandte Artikel zu Regression: Models, Methods and Applications

Regression: Models, Methods and Applications - Hardcover

 
9783642343322: Regression: Models, Methods and Applications

Inhaltsangabe

Book by Fahrmeir Ludwig Kneib Thomas Lang Stefan Marx Bria

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas

From the book reviews:

“This is a very useful book for researchers, in particular those often faced with data not suited to the classical linear model, and for teachers who wish to motivate good students with an introduction to the wonderful and diverse world of modern statistical modeling. The use of interesting examples and well-thought-out remarks, together with important theory, aid the reader in getting a very good feel for the topics covered.” (Luke A. Prendergast, Mathematical Reviews, June, 2014)

“The book is an excellent resource for a wide range of readers ... . more accessible to readers interested in applications of these procedures. ... Summing Up: Highly recommended. Students of all levels, researchers/faculty, and professionals.” (D. J. Gougeon, Choice, Vol. 51 (8), April, 2014)

“This is a comprehensive review of various types of theoretical and applied regression models and methodology. ... The book provides a strong mathematical base for the understanding of various types of regression models and methodology by integrating theory and practical application. ... This is an excellent reference for teachers, students, and researchers in statistics, mathematics, and social, economic, and life sciences.” (Kamesh Sivagnanam, Doody’s Book Reviews, August, 2013)

Reseña del editor

The aim of this book is an applied and unified introduction into parametric, non- and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through many real data examples and case studies. Availability of (user-friendly) software has been a major criterion for the methods selected and presented. Thus, the book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written on an intermediate mathematical level and assumes only knowledge of basic probability, calculus, and statistics. The most important definitions and statements are concisely summarized in boxes. Two appendices describe required matrix algebra, as well as elements of probability calculus and statistical inference.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2013
  • ISBN 10 3642343325
  • ISBN 13 9783642343322
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten714

Gebraucht kaufen

Zustand: Befriedigend
Cover and edges may have some wear...
Diesen Artikel anzeigen

EUR 3,53 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

EUR 14,08 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Regression: Models, Methods and Applications

Beispielbild für diese ISBN

Fahrmeir, Ludwig,Kneib, Thomas,Lang, Stefan,Marx, Brian
Verlag: Springer, 2013
ISBN 10: 3642343325 ISBN 13: 9783642343322
Gebraucht Hardcover

Anbieter: Books From California, Simi Valley, CA, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

hardcover. Zustand: Good. Cover and edges may have some wear. Loose binding, good reading copy. Artikel-Nr. mon0003685912

Verkäufer kontaktieren

Gebraucht kaufen

EUR 120,10
Währung umrechnen
Versand: EUR 3,53
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian
Verlag: Springer, 2013
ISBN 10: 3642343325 ISBN 13: 9783642343322
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783642343322_new

Verkäufer kontaktieren

Neu kaufen

EUR 143,30
Währung umrechnen
Versand: EUR 14,08
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ludwig Fahrmeir (Autor), Thomas Kneib (Autor), Stefan Lang (Autor), Brian Marx (Autor)
Verlag: Springer, 2013
ISBN 10: 3642343325 ISBN 13: 9783642343322
Gebraucht Hardcover

Anbieter: BUCHSERVICE / ANTIQUARIAT Lars Lutzer, Wahlstedt, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: gut. 2013. The aim of this book is an applied and unified introduction into parametric, non- and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through many real data examples and case studies. Availability of (user-friendly) software has been a major criterion for the methods selected and presented. Thus, the book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written on an intermediate mathematical level and assumes only knowledge of basic probability, calculus, and statistics. The most important definitions and statements are concisely summarized in boxes. Two appendices describe required matrix algebra, as well as elements of probability calculus and statistical inference. Autor: Ludwig Fahrmeir is Professor emeritus at the Department of Statistics at Ludwig-Maximilians-University Munich. From 1995 to 2006 he was speaker of the Collaborative Research Center 'Statistical Analysis of Discrete Data', supported financially by the German National Science Foundation. His main research interests are semiparametric regression, longitudinal data analysis and spatial statistics, with applications ranging from social science and risk management to public health and neuroscience. - Thomas Kneib is Professor for Statistics at Georg August University Göttingen, Germany, where he is speaker of the interdisciplinary Centre for Statistics and a Research Training Group on "Scaling Problems in Statistics". He received his PhD in Statistics at Ludwig-Maximilians-University Munich and, during his PostDoc phase, has been Visiting Professor for Applied Statistics at the University of Ulm and Substitute Professor for Statistics at Georg-August-University Göttingen. From 2009 until 2011 he has been Professor for Applied Statistics at Carl von Ossietzky University Oldenburg. His main research interests include semiparametric regression, spatial statistics and quantile regression. - Stefan Lang is Professor for Applied Statistics at University of Innsbruck, Austria. He received his PhD at Ludwig-Maximilians-University Munich. From 2005 to 2006 he has been Professor for Statistics at University of Leipzig. He is currently editor of Advances of Statistical Analysis and Associate Editor of Statistical Modelling. His main research interests include semiparametric and spatial regression, multilevel modelling and complex Bayesian models, with applications among others in environmetrics, marketing science, real estate and actuarial science. - Brian D. Marx is a full professor in the Department of Experimental Statisitics at Louisiana State University. His main research interests include P-spline smoothiing, ill-conditioned regression problems, and high-dimensional chemometric applications. He is currently serving as coordinating editor for the journal Statistical Modelling and is past chair of the Statistical Modelling Society. Content: Introduction.- Regression Models.- The Classical Linear Model.- Extensions of the Classical Linear Model.- Generalized Linear Models.- Categorical Regression Models.- Mixed Models.- Nonparametric Regression.- Structured Additive Regression.- Quantile Regression.- A Matrix Algebra.- B Probability Calculus and Statistical Inference.- Bibliography.- Index. Zusatzinfo XIV, 698 p. Verlagsort Berlin Sprache englisch Maße 155 x 235 mm Mathematik / Informatik Mathematik Wirtschaft Lexika Generalized Linear Models linear regression mixed models Regression Statistik Semiparametric Regression spatial regression Wirtschaftsstatistik ISBN-10 3-642-34332-5 / 3642343325 ISBN-13 978-3-642-34332-2 / 9783642343322 In englischer Sprache. 650 pages. 15,6 x 3,8 x 23,4 cm. Artikel-Nr. BN25161

Verkäufer kontaktieren

Gebraucht kaufen

EUR 141,99
Währung umrechnen
Versand: EUR 29,95
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian
Verlag: Springer, 2013
ISBN 10: 3642343325 ISBN 13: 9783642343322
Gebraucht Hardcover

Anbieter: BUCHSERVICE / ANTIQUARIAT Lars Lutzer, Wahlstedt, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: gut. Rechnung mit MwSt - Versand aus Deutschland pages. Artikel-Nr. TG-HOWF-CQ49

Verkäufer kontaktieren

Gebraucht kaufen

EUR 151,99
Währung umrechnen
Versand: EUR 29,95
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Ludwig Fahrmeir
ISBN 10: 3642343325 ISBN 13: 9783642343322
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The aim of this book is an applied and unified introduction into parametric, non- and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through many real data examples and case studies. Availability of (user-friendly) software has been a major criterion for the methods selected and presented. Thus, the book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written on an intermediate mathematical level and assumes only knowledge of basic probability, calculus, and statistics. The most important definitions and statements are concisely summarized in boxes. Two appendices describe required matrix algebra, as well as elements of probability calculus and statistical inference. Artikel-Nr. 9783642343322

Verkäufer kontaktieren

Neu kaufen

EUR 166,41
Währung umrechnen
Versand: EUR 33,92
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb