The main idea of statistical convergence is to demand convergence only for a majority of elements of a sequence. This method of convergence has been investigated in many fundamental areas of mathematics such as: measure theory, approximation theory, fuzzy logic theory, summability theory, and so on. In this monograph we consider this concept in approximating a function by linear operators, especially when the classical limit fails. The results of this book not only cover the classical and statistical approximation theory, but also are applied in the fuzzy logic via the fuzzy-valued operators. The authors in particular treat the important Korovkin approximation theory of positive linear operators in statistical and fuzzy sense. They also present various statistical approximation theorems for some specific real and complex-valued linear operators that are not positive. This is the first monograph in Statistical Approximation Theory and Fuzziness. The chapters are self-contained and several advanced courses can be taught.
The research findings will be useful in various applications including applied and computational mathematics, stochastics, engineering, artificial intelligence, vision and machine learning. This monograph is directed to graduate students, researchers, practitioners and professors of all disciplines.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The main idea of statistical convergence is to demand convergence only for a majority of elements of a sequence. This method of convergence has been investigated in many fundamental areas of mathematics such as: measure theory, approximation theory, fuzzy logic theory, summability theory, and so on. In this monograph we consider this concept in approximating a function by linear operators, especially when the classical limit fails. The results of this book not only cover the classical and statistical approximation theory, but also are applied in the fuzzy logic via the fuzzy-valued operators. The authors in particular treat the important Korovkin approximation theory of positive linear operators in statistical and fuzzy sense. They also present various statistical approximation theorems for some specific real and complex-valued linear operators that are not positive. This is the first monograph in Statistical Approximation Theory and Fuzziness. The chapters are self-contained and several advanced courses can be taught.
The research findings will be useful in various applications including applied and computational mathematics, stochastics, engineering, artificial intelligence, vision and machine learning. This monograph is directed to graduate students, researchers, practitioners and professors of all disciplines.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 2011 edition. 252 pages. 8.43x5.85x0.73 inches. In Stock. Artikel-Nr. x-364226817X
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Towards Intelligent Modeling: Statistical Approximation Theory | George A. Anastassiou (u. a.) | Taschenbuch | xvi | Englisch | 2013 | Springer | EAN 9783642268175 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 105734341
Anzahl: 5 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The main idea of statistical convergence is to demand convergence only for a majority of elements of a sequence. This method of convergence has been investigated in many fundamental areas of mathematics such as: measure theory, approximation theory, fuzzy logic theory, summability theory, and so on. In this monograph we consider this concept in approximating a function by linear operators, especially when the classical limit fails. The results of this book not only cover the classical and statistical approximation theory, but also are applied in the fuzzy logic via the fuzzy-valued operators. The authors in particular treat the important Korovkin approximation theory of positive linear operators in statistical and fuzzy sense. They also present various statistical approximation theorems for some specific real and complex-valued linear operators that are not positive. This is the first monograph in Statistical Approximation Theory and Fuzziness. The chapters are self-contained and several advanced courses can be taught.The research findings will be useful in various applications including applied and computational mathematics, stochastics, engineering, artificial intelligence, vision and machine learning. This monograph is directed to graduate students, researchers, practitioners and professors of all disciplines. Artikel-Nr. 9783642268175
Anzahl: 1 verfügbar