Diffusion in solids at moderate temperatures is a well-known phenomenon. However, direct experimental evidence about the responsible atomic-scale mechanisms has been scarce, due to difficulties in probing the relevant length- and time-scales. The present thesis deals with the application of X-ray Photon Correlation Spectroscopy (XPCS) for answering such questions. This is an established method for the study of slow dynamics on length-scales of a few nanometres. The scattered intensity in the diffuse regime, i.e. corresponding to atomic distances, is very low, however, and so it has so far been considered impossible to use XPCS for this problem.
Threefold progress is reported in this work: It proposes a number of systems selected for high diffuse intensity, it optimizes the photon detection and data evaluation procedures, and it establishes theoretical models for interpretating the results. Together these advances allowed the first successful atomic-scale XPCS experiment, which elucidated the role of preferred configurations for atomic jumps in a copper-gold alloy.
The growth in available coherent X-ray intensity together with next-generation X-ray sources will open up a wide field of application for this new method.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Diffusion in solids at moderate temperatures is a well-known phenomenon. However, direct experimental evidence about the responsible atomic-scale mechanisms has been scarce, due to difficulties in probing the relevant length- and time-scales. The present thesis deals with the application of X-ray Photon Correlation Spectroscopy (XPCS) for answering such questions. This is an established method for the study of slow dynamics on length-scales of a few nanometres. The scattered intensity in the diffuse regime, i.e. corresponding to atomic distances, is very low, however, and so it has so far been considered impossible to use XPCS for this problem.
Threefold progress is reported in this work: It proposes a number of systems selected for high diffuse intensity, it optimizes the photon detection and data evaluation procedures, and it establishes theoretical models for interpretating the results. Together these advances allowed the first successful atomic-scale XPCS experiment, which elucidated the role of preferred configurations for atomic jumps in a copper-gold alloy.
The growth in available coherent X-ray intensity together with next-generation X-ray sources will open up a wide field of application for this new method.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 108 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 11242970/12
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Diffusion in solids at moderate temperatures is a well-known phenomenon. However, direct experimental evidence about the responsible atomic-scale mechanisms has been scarce, due to difficulties in probing the relevant length- and time-scales. The present thesis deals with the application of X-ray Photon Correlation Spectroscopy (XPCS) for answering such questions. This is an established method for the study of slow dynamics on length-scales of a few nanometres. The scattered intensity in the diffuse regime, i.e. corresponding to atomic distances, is very low, however, and so it has so far been considered impossible to use XPCS for this problem.Threefold progress is reported in this work: It proposes a number of systems selected for high diffuse intensity, it optimizes the photon detection and data evaluation procedures, and it establishes theoretical models for interpretating the results. Together these advances allowed the first successful atomic-scale XPCS experiment, which elucidated the role of preferred configurations for atomic jumps in a copper-gold alloy.The growth in available coherent X-ray intensity together with next-generation X-ray sources will open up a wide field of application for this new method.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 108 pp. Englisch. Artikel-Nr. 9783642241208
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Diffusion in solids at moderate temperatures is a well-known phenomenon. However, direct experimental evidence about the responsible atomic-scale mechanisms has been scarce, due to difficulties in probing the relevant length- and time-scales. The present thesis deals with the application of X-ray Photon Correlation Spectroscopy (XPCS) for answering such questions. This is an established method for the study of slow dynamics on length-scales of a few nanometres. The scattered intensity in the diffuse regime, i.e. corresponding to atomic distances, is very low, however, and so it has so far been considered impossible to use XPCS for this problem.Threefold progress is reported in this work: It proposes a number of systems selected for high diffuse intensity, it optimizes the photon detection and data evaluation procedures, and it establishes theoretical models for interpretating the results. Together these advances allowed the first successful atomic-scale XPCS experiment, which elucidated the role of preferred configurations for atomic jumps in a copper-gold alloy. The growth in available coherent X-ray intensity together with next-generation X-ray sources will open up a wide field of application for this new method. Artikel-Nr. 9783642241208
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783642241208_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 2012 edition. 110 pages. 9.25x6.25x0.50 inches. In Stock. Artikel-Nr. x-3642241204
Anzahl: 2 verfügbar