Verwandte Artikel zu Hybrid Random Fields: A Scalable Approach to Structure...

Hybrid Random Fields: A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models: 15 (Intelligent Systems Reference Library) - Hardcover

 
9783642203077: Hybrid Random Fields: A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models: 15 (Intelligent Systems Reference Library)

Inhaltsangabe

This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives.
-- Manfred Jaeger, Aalborg Universitet

The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it.
-- Marco Gori, Università degli Studi di Siena


Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives.
-- Manfred Jaeger, Aalborg Universitet

The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it.
-- Marco Gori, Università degli Studi di Siena


Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,81 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783642268182: Hybrid Random Fields: A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models: 15 (Intelligent Systems Reference Library)

Vorgestellte Ausgabe

ISBN 10:  3642268188 ISBN 13:  9783642268182
Verlag: Springer, 2013
Softcover

Suchergebnisse für Hybrid Random Fields: A Scalable Approach to Structure...

Beispielbild für diese ISBN

Freno, Antonino; Trentin, Edmondo
Verlag: Springer, 2011
ISBN 10: 3642203078 ISBN 13: 9783642203077
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783642203077_new

Verkäufer kontaktieren

Neu kaufen

EUR 111,74
Währung umrechnen
Versand: EUR 13,81
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Freno, Antonino (Editor)/ Trentin, Edmondo (Editor)
Verlag: Springer Verlag, 2011
ISBN 10: 3642203078 ISBN 13: 9783642203077
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 2011 edition. 228 pages. 9.75x6.50x0.50 inches. In Stock. Artikel-Nr. x-3642203078

Verkäufer kontaktieren

Neu kaufen

EUR 150,48
Währung umrechnen
Versand: EUR 28,81
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb