This book covers basic properties of complex reflection groups, such as characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, including the basic findings of Springer theory on eigenspaces.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Weyl groups are particular cases of complex reflection groups, i.e. finite subgroups of GLr(C) generated by (pseudo)reflections. These are groups whose polynomial ring of invariants is a polynomial algebra.
It has recently been discovered that complex reflection groups play a key role in the theory of finite reductive groups, giving rise as they do to braid groups and generalized Hecke algebras which govern the representation theory of finite reductive groups. It is now also broadly agreed upon that many of the known properties of Weyl groups can be generalized to complex reflection groups. The purpose of this work is to present a fairly extensive treatment of many basic properties of complex reflection groups (characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, etc.) including the basic findings of Springer theory on eigenspaces. In doing so, we also introduce basic definitions and properties of the associated braid groups, as well as a quick introduction to Bessis' lifting of Springer theory to braid groups.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Good. Volume 1988. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,350grams, ISBN:9783642111747. Artikel-Nr. 5780260
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Weyl groups are particular cases of complex reflection groups, i.e. finite subgroups of GLr(C) generated by (pseudo)reflections. These are groups whose polynomial ring of invariants is a polynomial algebra.It has recently been discovered that complex reflection groups play a key role in the theory of finite reductive groups, giving rise as they do to braid groups and generalized Hecke algebras which govern the representation theory of finite reductive groups. It is now also broadly agreed upon that many of the known properties of Weyl groups can be generalized to complex reflection groups. The purpose of this work is to present a fairly extensive treatment of many basic properties of complex reflection groups (characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, etc.) including the basic findings of Springer theory on eigenspaces. In doing so, we also introduce basic definitions and properties of the associated braid groups, as well as a quick introduction to Bessis' lifting of Springer theory to braid groups. Artikel-Nr. 9783642111747
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Introduction to Complex Reflection Groups and Their Braid Groups | Michel Broué | Taschenbuch | xii | Englisch | 2010 | Springer | EAN 9783642111747 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 101410579
Anzahl: 5 verfügbar