Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The Black-Scholes formula plays a central role in Mathematical Finance; it gives the right price at which buyer and seller can agree with, in the geometric Brownian framework, when strike K and maturity T are given. This yields an explicit well-known formula, obtained by Black and Scholes in 1973.
The present volume gives another representation of this formula in terms of Brownian last passages times, which, to our knowledge, has never been made in this sense.
The volume is devoted to various extensions and discussions of features and quantities stemming from the last passages times representation in the Brownian case such as: past-future martingales, last passage times up to a finite horizon, pseudo-inverses of processes... They are developed in eight chapters, with complements, appendices and exercises.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,74 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783642103940_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2010. Paperback. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9783642103940
Anzahl: 15 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1st edition. 270 pages. 9.25x6.25x0.50 inches. In Stock. Artikel-Nr. x-3642103944
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t 0; F ,t 0, P) - t t note a standard Brownian motion with B = 0, (F ,t 0) being its natural ltra- 0 t t tion. Let E := exp B ,t 0 denote the exponential martingale associated t t 2 to (B ,t 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K 0: + (t) :=E (K E ) (0.1) K t and + C (t) :=E (E K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 2 N (x) := e dy. (0.3) 2 The celebrated Black-Scholes formula gives an explicit expression of (t) and K C (t) in terms ofN : K log(K) t log(K) t (t)= KN + N (0.4) K t 2 t 2 and Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch. Artikel-Nr. 9783642103940
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t 0; F ,t 0, P) - t t note a standard Brownian motion with B = 0, (F ,t 0) being its natural ltra- 0 t t tion. Let E := exp B ,t 0 denote the exponential martingale associated t t 2 to (B ,t 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K 0: + (t) :=E (K E ) (0.1) K t and + C (t) :=E (E K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 2 N (x) := e dy. (0.3) 2 The celebrated Black-Scholes formula gives an explicit expression of (t) and K C (t) in terms ofN : K log(K) t log(K) t (t)= KN + N (0.4) K t 2 t 2 and. Artikel-Nr. 9783642103940
Anzahl: 1 verfügbar