This fascinating work makes the link between the rarified world of maths and the down-to-earth one inhabited by engineers. It introduces and explains classical and modern mathematical procedures as applied to the real problems confronting engineers and geoscientists. Written in a manner that is understandable for students across the breadth of their studies, it lays out the foundations for mastering difficult and sometimes confusing mathematical methods. Arithmetic examples and figures fully support this approach, while all important mathematical techniques are detailed. Derived from the author's long experience teaching courses in applied mathematics, it is based on the lectures, exercises and lessons she has used in her classes. Also, the explanations and discussions in the book are inspired by the most frequently-asked questions of students, graduates and professionals.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In 1970 Olga Waelder was born in Moscow. She began her studies at the Technical University for Electronics and Mathematics in Moscow in 1987 from whence she received her degree in applied mathematics in 1993. From 1996 until 1999 she furthered her studies at the Technical University Mining Academy in Freiberg (Germany) from whence she received a degree in mathematics. Between 2001 and 2004 she was a research assistant at the Institute for Cartography, Dresden Technical University. In 2003 she began lecturing mathematical cartography. She continued her post doctorate studies there in 2004 and since 2005 has been a lecturer for adjustment theory.
This book introduces and explains classical and modern mathematical procedures as applied to the real problems confronting engineers and geoscientists. Written in a manner that is understandable for students across the breadth of their studies, it lays out the foundations for mastering difficult and sometimes confusing mathematical methods. Arithmetic examples and figures fully support this approach, while all important mathematical techniques are detailed. Derived from the author's long experience teaching courses in applied mathematics, it is based on the lectures, exercises and lessons she has used in her classes. Also, the explanations and discussions in the book are inspired by the most frequently-asked questions of students, graduates and professionals.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,77 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783642094569_new
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -We start with a fun puzzle in mathematics and mathematical methods. How many corners does a four-dimensional cube have Does such a thing exist, you ask You may be a geoscientist or a philosopher. If your answer is: there are surely more than the eight corners there are for a three-dimensional cube, you are an engineer. If you know without hesitation that there are exactly sixteen corners and you can prove why, you are a mathematician. To explain the goal of this book, I refer to Hersh (1997): The United States suffers from ¿innumeracy¿ in its general population, ¿math avoidance¿ amonghigh-schoolstudents,and50percentfailureamongcollegecalculuss tudents.Causes include starvation budgets in the school, mental attrition by television, parents who don¿t like math. There¿s another, unrecognized cause of failure: misconception of the nature of mathematics. I think the speci c reference to the United States may be omitted. It is really a worldwide problem. Moreover, there is one more consequence of ¿math avoidance¿ and ¿misconception¿: good mathematical approaches are sometimes applied inc- rectly. Particularly, the methods of statistics are often misused for different goals. Applying mathematical methods is similar to using nuclear power: the nal results depend on the competence of the user. I try to convince my readers to apply the ¿energy¿ of mathematics with consideration.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch. Artikel-Nr. 9783642094569
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - We start with a fun puzzle in mathematics and mathematical methods. How many corners does a four-dimensional cube have Does such a thing exist, you ask You may be a geoscientist or a philosopher. If your answer is: there are surely more than the eight corners there are for a three-dimensional cube, you are an engineer. If you know without hesitation that there are exactly sixteen corners and you can prove why, you are a mathematician. To explain the goal of this book, I refer to Hersh (1997): The United States suffers from 'innumeracy' in its general population, 'math avoidance' amonghigh-schoolstudents,and50percentfailureamongcollegecalculusstudents.Causes include starvation budgets in the school, mental attrition by television, parents who don't like math. There's another, unrecognized cause of failure: misconception of the nature of mathematics. I think the speci c reference to the United States may be omitted. It is really a worldwide problem. Moreover, there is one more consequence of 'math avoidance' and 'misconception': good mathematical approaches are sometimes applied inc- rectly. Particularly, the methods of statistics are often misused for different goals. Applying mathematical methods is similar to using nuclear power: the nal results depend on the competence of the user. I try to convince my readers to apply the 'energy' of mathematics with consideration. Artikel-Nr. 9783642094569
Anzahl: 1 verfügbar