Verwandte Artikel zu Perspectives of Neural-Symbolic Integration: 77 (Studies...

Perspectives of Neural-Symbolic Integration: 77 (Studies in Computational Intelligence) - Softcover

 
9783642093227: Perspectives of Neural-Symbolic Integration: 77 (Studies in Computational Intelligence)

Inhaltsangabe

The human brain possesses the remarkable capability of understanding, - terpreting, and producing human language, thereby relying mostly on the left hemisphere. The ability to acquire language is innate as can be seen from d- orders such as speci?c language impairment (SLI), which manifests itself in a missing sense for grammaticality. Language exhibits strong compositionality and structure. Hence biological neural networks are naturally connected to processing and generation of high-level symbolic structures. Unlike their biological counterparts, arti?cial neural networks and logic do not form such a close liason. Symbolic inference mechanisms and statistical machine learning constitute two major and very di?erent paradigms in ar- ?cial intelligence which both have their strengths and weaknesses: Statistical methods o?er ?exible and highly e?ective tools which are ideally suited for possibly corrupted or noisy data, high uncertainty and missing information as occur in everyday life such as sensor streams in robotics, measurements in medicine such as EEG and EKG, ?nancial and market indices, etc. The m- els, however, are often reduced to black box mechanisms which complicate the integration of prior high level knowledge or human inspection, and they lack theabilitytocopewitharichstructureofobjects,classes,andrelations. S- bolic mechanisms, on the other hand, are perfectly applicative for intuitive human-machine interaction, the integration of complex prior knowledge, and well founded recursive inference. Their capability of dealing with uncertainty andnoiseandtheire?ciencywhenaddressingcorruptedlargescalereal-world data sets, however, is limited. Thus, the inherent strengths and weaknesses of these two methods ideally complement each other.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

The human brain possesses the remarkable capability of understanding, interpreting, and producing language, structures, and logic. Unlike their biological counterparts, artificial neural networks do not form such a close liason with symbolic reasoning: logic-based inference mechanisms and statistical machine learning constitute two major and very different paradigms in artificial intelligence with complementary strengths and weaknesses. Modern application scenarios in robotics, bioinformatics, language processing, etc., however require both the efficiency and noise-tolerance of statistical models and the generalization ability and high-level modelling of structural inference meachanisms. A variety of approaches has therefore been proposed for combining the two paradigms.

This carefully edited volume contains state-of-the-art contributions in neural-symbolic integration, covering `loose' coupling by means of structure kernels or recursive models as well as `strong' coupling of logic and neural networks. It brings together a representative selection of results presented by some of the top researchers in the field, covering theoretical foundations, algorithmic design, and state-of-the-art applications in robotics and bioinformatics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783540739531: Perspectives of Neural-Symbolic Integration: 77 (Studies in Computational Intelligence)

Vorgestellte Ausgabe

ISBN 10:  354073953X ISBN 13:  9783540739531
Verlag: Springer, 2007
Hardcover

Suchergebnisse für Perspectives of Neural-Symbolic Integration: 77 (Studies...

Foto des Verkäufers

Pascal Hitzler
ISBN 10: 3642093221 ISBN 13: 9783642093227
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The human brain possesses the remarkable capability of understanding, - terpreting, and producing human language, thereby relying mostly on the left hemisphere. The ability to acquire language is innate as can be seen from d- orders such as speci c language impairment (SLI), which manifests itself in a missing sense for grammaticality. Language exhibits strong compositionality and structure. Hence biological neural networks are naturally connected to processing and generation of high-level symbolic structures. Unlike their biological counterparts, arti cial neural networks and logic do not form such a close liason. Symbolic inference mechanisms and statistical machine learning constitute two major and very di erent paradigms in ar- cial intelligence which both have their strengths and weaknesses: Statistical methods o er exible and highly e ective tools which are ideally suited for possibly corrupted or noisy data, high uncertainty and missing information as occur in everyday life such as sensor streams in robotics, measurements in medicine such as EEG and EKG, nancial and market indices, etc. The m- els, however, are often reduced to black box mechanisms which complicate the integration of prior high level knowledge or human inspection, and they lack theabilitytocopewitharichstructureofobjects,classes,andrelations. S- bolic mechanisms, on the other hand, are perfectly applicative for intuitive human-machine interaction, the integration of complex prior knowledge, and well founded recursive inference. Their capability of dealing with uncertainty andnoiseandtheire ciencywhenaddressingcorruptedlargescalereal-world data sets, however, is limited. Thus, the inherent strengths and weaknesses of these two methods ideally complement each other. Artikel-Nr. 9783642093227

Verkäufer kontaktieren

Neu kaufen

EUR 213,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2010
ISBN 10: 3642093221 ISBN 13: 9783642093227
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783642093227_new

Verkäufer kontaktieren

Neu kaufen

EUR 251,97
Währung umrechnen
Versand: EUR 5,75
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Barbara Hammer
Verlag: Springer, 2007
ISBN 10: 3642093221 ISBN 13: 9783642093227
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 332 pages. 9.25x6.10x0.76 inches. In Stock. Artikel-Nr. x-3642093221

Verkäufer kontaktieren

Neu kaufen

EUR 299,48
Währung umrechnen
Versand: EUR 11,54
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb