As computational fluid dynamics (CFD) is applied to ever more demanding fluid flow problems, the ability to compute numerical fluid flow solutions to a user specified tolerance as well as the ability to quantify the accuracy of an existing numerical solution are seen as essential ingredients in robust numerical simulation. Although the task of accurate error estimation for the nonlinear equations of CFD seems a daunting problem, considerable effort has centered on this challenge in recent years with notable progress being made by the use of advanced error estimation techniques and adaptive discretization methods. To address this important topic, a special course wasjointly organized by the NATO Research and Technology Office (RTO), the von Karman Insti tute for Fluid Dynamics, and the NASA Ames Research Center. The NATO RTO sponsored course entitled "Error Estimation and Solution Adaptive Discretization in CFD" was held September 10-14, 2002 at the NASA Ames Research Center and October 15-19, 2002 at the von Karman Institute in Belgium. During the special course, a series of comprehensive lectures by leading experts discussed recent advances and technical progress in the area of numerical error estimation and adaptive discretization methods with spe cific emphasis on computational fluid dynamics. The lecture notes provided in this volume are derived from the special course material. The volume con sists of 6 articles prepared by the special course lecturers.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
As computational fluid dynamics (CFD) is applied to ever more demanding fluid flow problems, the ability to compute numerical fluid flow solutions to a user specified tolerance as well as the ability to quantify the accuracy of an existing numerical solution are seen as essential ingredients in robust numerical simulation. Although the task of accurate error estimation for the nonlinear equations of CFD seems a daunting problem, considerable effort has centered on this challenge in recent years with notable progress being made by the use of advanced error estimation techniques and adaptive discretization methods. To address this important topic, a special course wasjointly organized by the NATO Research and Technology Office (RTO), the von Karman Insti tute for Fluid Dynamics, and the NASA Ames Research Center. The NATO RTO sponsored course entitled "Error Estimation and Solution Adaptive Discretization in CFD" was held September 10-14, 2002 at the NASA Ames Research Center and October 15-19, 2002 at the von Karman Institute in Belgium. During the special course, a series of comprehensive lectures by leading experts discussed recent advances and technical progress in the area of numerical error estimation and adaptive discretization methods with spe cific emphasis on computational fluid dynamics. The lecture notes provided in this volume are derived from the special course material. The volume con sists of 6 articles prepared by the special course lecturers.
This book considers recent developments in numerical error estimation and adaptive discretization for finite element and finite volume methods with particular attention given to discretization methods used frequently in computational fluid dynamics. The volume consists of six detailed articles by leading specialists covering a range of topics including a posteriori error estimation of functionals, one- and two-sided error bounds, error indicators for ad aptivity, and nd geometrical aspects of adaptive mesh refinement. This book should be of interest to readers actively working in the field as well as readers seeking a comprehensive introduction to the topic.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - As computational fluid dynamics (CFD) is applied to ever more demanding fluid flow problems, the ability to compute numerical fluid flow solutions to a user specified tolerance as well as the ability to quantify the accuracy of an existing numerical solution are seen as essential ingredients in robust numerical simulation. Although the task of accurate error estimation for the nonlinear equations of CFD seems a daunting problem, considerable effort has centered on this challenge in recent years with notable progress being made by the use of advanced error estimation techniques and adaptive discretization methods. To address this important topic, a special course wasjointly organized by the NATO Research and Technology Office (RTO), the von Karman Insti tute for Fluid Dynamics, and the NASA Ames Research Center. The NATO RTO sponsored course entitled 'Error Estimation and Solution Adaptive Discretization in CFD' was held September 10-14, 2002 at the NASA Ames Research Center and October 15-19, 2002 at the von Karman Institute in Belgium. During the special course, a series of comprehensive lectures by leading experts discussed recent advances and technical progress in the area of numerical error estimation and adaptive discretization methods with spe cific emphasis on computational fluid dynamics. The lecture notes provided in this volume are derived from the special course material. The volume con sists of 6 articles prepared by the special course lecturers. Artikel-Nr. 9783642078415
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783642078415_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Editor(s): Barth, Timothy J.; Deconinck, Herman. Series: Lecture Notes in Computational Science and Engineering. Num Pages: 356 pages, 24 black & white tables, biography. BIC Classification: PBWL; TBJ; TGM. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 18. Weight in Grams: 551. . 2010. 1st ed. Softcover of orig. ed. 2003. Paperback. . . . . Books ship from the US and Ireland. Artikel-Nr. V9783642078415
Anzahl: 15 verfügbar