Verwandte Artikel zu Non-Standard Parameter Adaptation for Exploratory Data...

Non-Standard Parameter Adaptation for Exploratory Data Analysis: 249 (Studies in Computational Intelligence) - Hardcover

 
9783642040047: Non-Standard Parameter Adaptation for Exploratory Data Analysis: 249 (Studies in Computational Intelligence)

Inhaltsangabe

Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets.

We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods.

We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combinations of these three methods are shown to outperform the individual methods of optimisation.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets.

We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods.

We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combinations of these three methods are shown to outperform the individual methods of optimisation.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2009
  • ISBN 10 3642040047
  • ISBN 13 9783642040047
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten240
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Sehr gut
Zustand: Sehr gut - Neubindung,...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783642260551: Non-Standard Parameter Adaptation for Exploratory Data Analysis: 249 (Studies in Computational Intelligence)

Vorgestellte Ausgabe

ISBN 10:  3642260551 ISBN 13:  9783642260551
Verlag: Springer, 2012
Softcover

Suchergebnisse für Non-Standard Parameter Adaptation for Exploratory Data...

Beispielbild für diese ISBN

Wesam Ashour Barbakh, Ying Wu, Colin Fyfe
Verlag: Springer-Verlag GmbH, 2009
ISBN 10: 3642040047 ISBN 13: 9783642040047
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Sehr gut. Zustand: Sehr gut - Neubindung, Buchschnitt leicht verkürzt, Auflage 2009 | Seiten: 228 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 5684292/12

Verkäufer kontaktieren

Gebraucht kaufen

EUR 84,68
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Wesam Ashour Barbakh
ISBN 10: 3642040047 ISBN 13: 9783642040047
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets.We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods. We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combinations of these three methods are shown to outperform the individual methods of optimisation. Artikel-Nr. 9783642040047

Verkäufer kontaktieren

Neu kaufen

EUR 111,53
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Barbakh, Wesam Ashour; Wu, Ying; Fyfe, Colin
Verlag: Springer, 2009
ISBN 10: 3642040047 ISBN 13: 9783642040047
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783642040047_new

Verkäufer kontaktieren

Neu kaufen

EUR 119,07
Währung umrechnen
Versand: EUR 5,90
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb