Doctoral Thesis / Dissertation from the year 2002 in the subject Mathematics - Stochastics, grade: 1, Technical University of Graz, language: English, abstract: Aus Sicht der Mathematik spielen Optionen eine wesentliche Rolle seit der bahnbrechenden Arbeit von Black und Scholes im Jahre 1973. Deren Modell basiert jedoch auf der unrealistischen Annahme, das log-returns von Aktienkursen normalverteilt sind. Eberlein und Keller haben 1995 gezeigt, daß solche log-returns hyperbolisch verteilt sind. Die vorliegende Arbeit baut auf dieser Annahme auf und erweitert das Optionsspektrum von Europäischen Optionen auf Asiatische, Amerikanische sowie Multi-Asset-Optionen. Weiters wird das "Standard"-Martingal-Maß, die sogenannte Esscher-Transformation, durch das Entropie-minimierende Maß erweitert. Da jedoch keine exakte Preissetzung solcher Optionen möglich ist, wird auf numerische Simulationen und Approximationen zurückgegriffen. Die verwendeten numerischen Verfahren sind die Monte Carlo-Methode mit verschiedenen Varianzreduktionstechniken und die Quasi-Monte Carlo Methode.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Doctoral Thesis / Dissertation from the year 2002 in the subject Mathematics - Stochastics, grade: 1, Technical University of Graz, language: English, abstract: Aus Sicht der Mathematik spielen Optionen eine wesentliche Rolle seit der bahnbrechenden Arbeit von Black und Scholes im Jahre 1973. Deren Modell basiert jedoch auf der unrealistischen Annahme, das log-returns von Aktienkursen normalverteilt sind. Eberlein und Keller haben 1995 gezeigt, daß solche log-returns hyperbolisch verteilt sind. Die vorliegende Arbeit baut auf dieser Annahme auf und erweitert das Optionsspektrum von Europäischen Optionen auf Asiatische, Amerikanische sowie Multi-Asset-Optionen. Weiters wird das "Standard"-Martingal-Maß, die sogenannte Esscher-Transformation, durch das Entropie-minimierende Maß erweitert. Da jedoch keine exakte Preissetzung solcher Optionen möglich ist, wird auf numerische Simulationen und Approximationen zurückgegriffen. Die verwendeten numerischen Verfahren sind die Monte Carlo-Methode mit verschiedenen Varianzreduktionstechniken und die Quasi-Monte Carlo Methode.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Doctoral Thesis / Dissertation from the year 2002 in the subject Mathematics - Stochastics, grade: 1, Technical University of Graz, language: English, abstract: Aus Sicht der Mathematik spielen Optionen eine wesentliche Rolle seit der bahnbrechenden Arbeit von Black und Scholes im Jahre 1973. Deren Modell basiert jedoch auf der unrealistischen Annahme, das log-returns von Aktienkursen normalverteilt sind. Eberlein und Keller haben 1995 gezeigt, daß solche log-returns hyperbolisch verteilt sind. Die vorliegende Arbeit baut auf dieser Annahme auf und erweitert das Optionsspektrum von Europäischen Optionen auf Asiatische, Amerikanische sowie Multi-Asset-Optionen. Weiters wird das 'Standard'-Martingal-Maß, die sogenannte Esscher-Transformation, durch das Entropie-minimierende Maß erweitert. Da jedoch keine exakte Preissetzung solcher Optionen möglich ist, wird auf numerische Simulationen und Approximationen zurückgegriffen. Die verwendeten numerischen Verfahren sind die Monte Carlo-Methode mit verschiedenen Varianzreduktionstechniken und die Quasi-Monte Carlo Methode.Books on Demand GmbH, Überseering 33, 22297 Hamburg 140 pp. Englisch. Artikel-Nr. 9783640305476
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Doctoral Thesis / Dissertation from the year 2002 in the subject Mathematics - Stochastics, grade: 1, Technical University of Graz, language: English, abstract: Aus Sicht der Mathematik spielen Optionen eine wesentliche Rolle seit der bahnbrechenden Arbeit von Black und Scholes im Jahre 1973. Deren Modell basiert jedoch auf der unrealistischen Annahme, das log-returns von Aktienkursen normalverteilt sind. Eberlein und Keller haben 1995 gezeigt, daß solche log-returns hyperbolisch verteilt sind. Die vorliegende Arbeit baut auf dieser Annahme auf und erweitert das Optionsspektrum von Europäischen Optionen auf Asiatische, Amerikanische sowie Multi-Asset-Optionen. Weiters wird das 'Standard'-Martingal-Maß, die sogenannte Esscher-Transformation, durch das Entropie-minimierende Maß erweitert. Da jedoch keine exakte Preissetzung solcher Optionen möglich ist, wird auf numerische Simulationen und Approximationen zurückgegriffen. Die verwendeten numerischen Verfahren sind die Monte Carlo-Methode mit verschiedenen Varianzreduktionstechniken und die Quasi-Monte Carlo Methode. Artikel-Nr. 9783640305476
Anzahl: 1 verfügbar