Verwandte Artikel zu Workforce Distribution in Dynamic Multiagent Systems

Workforce Distribution in Dynamic Multiagent Systems - Softcover

 
9783639712957: Workforce Distribution in Dynamic Multiagent Systems

Inhaltsangabe

This work describes a novel approach to the problem of workforce distribution in dynamic multi-agent systems based on blackboard architectures, focusing especially on a real-world scenario: the multi-skill call centre. Traditionally, to address such highly-dynamic environments, diverse greedy heuristics have been applied to provide solutions in real-time. Basically, these heuristics perform a continuous re-planning on the system, taking into account its current state at all times. As decisions are greedily taken, the distribution of the workforce may be poor in the medium and/or long term. The usage of parallel memetic algorithms, which are more sophisticated than standard ad-hoc heuristics, can lead us towards much more accurate solutions. In order to effectively apply parallel memetic algorithms to such a dynamic environment, we introduce the concept of adaptive time window. Thus, the size of the time window depends upon the level of dynamism of the system at a given time. This research proposes a set of tools to automatically determine the dynamism of the system, as well as a novel and precise prediction module based on a neural network and a powerful optimization method.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This work describes a novel approach to the problem of workforce distribution in dynamic multi-agent systems based on blackboard architectures, focusing especially on a real-world scenario: the multi-skill call centre. Traditionally, to address such highly-dynamic environments, diverse greedy heuristics have been applied to provide solutions in real-time. Basically, these heuristics perform a continuous re-planning on the system, taking into account its current state at all times. As decisions are greedily taken, the distribution of the workforce may be poor in the medium and/or long term. The usage of parallel memetic algorithms, which are more sophisticated than standard ad-hoc heuristics, can lead us towards much more accurate solutions. In order to effectively apply parallel memetic algorithms to such a dynamic environment, we introduce the concept of adaptive time window. Thus, the size of the time window depends upon the level of dynamism of the system at a given time. This research proposes a set of tools to automatically determine the dynamism of the system, as well as a novel and precise prediction module based on a neural network and a powerful optimization method.

Biografía del autor

Dr. David Millan is a senior product director, an IT strategist and a chief data scientist with 10 years of international experience in data science, BI, innovation and applied research. He plays different roles: CSO&VP Data Science at Pragsis, Co-Founder at Bidoop, Research Assistant at Complutense University of Madrid, Associate Lecturer at UTad.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagScholars' Press
  • Erscheinungsdatum2014
  • ISBN 10 3639712951
  • ISBN 13 9783639712957
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten252
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Workforce Distribution in Dynamic Multiagent Systems

Foto des Verkäufers

David Millán-Ruiz|José Ignacio Hidalgo-Pérez
Verlag: Scholars\' Press, 2014
ISBN 10: 3639712951 ISBN 13: 9783639712957
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 151398315

Verkäufer kontaktieren

Neu kaufen

EUR 72,70
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb