In recent years, there have been many studies in which tailored heuristics and meta-heuristics have been applied to specific optimisation problems. These algorithms can be extremely efficient, but may also lack generality. In contrast, the research outlined in this monograph focuses on building a general-purpose combinatorial optimisation problem solver using a variety of meta-heuristic algorithms including Simulated Annealing and Tabu Search. The work is novel because it uses a modelling environment in which the solution is stored in dense dynamic list structures, unlike a more conventional sparse vector notation. Because of this, it incorporates a number of neighbourhood search operators that are normally only found in tailored algorithms and it performs well on a range of problems. The general nature of the outlined system allows a model developer to rapidly prototype different problems. The results indicate that the system achieves good performance in terms of solution quality and runtime on a range of combinatorial problems.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In recent years, there have been many studies in which tailored heuristics and meta-heuristics have been applied to specific optimisation problems. These algorithms can be extremely efficient, but may also lack generality. In contrast, the research outlined in this monograph focuses on building a general-purpose combinatorial optimisation problem solver using a variety of meta-heuristic algorithms including Simulated Annealing and Tabu Search. The work is novel because it uses a modelling environment in which the solution is stored in dense dynamic list structures, unlike a more conventional sparse vector notation. Because of this, it incorporates a number of neighbourhood search operators that are normally only found in tailored algorithms and it performs well on a range of problems. The general nature of the outlined system allows a model developer to rapidly prototype different problems. The results indicate that the system achieves good performance in terms of solution quality and runtime on a range of combinatorial problems.
Dr Randall is an associate professor at Bond University, Australia. He is a computer scientist with research interests in combinatorial optimisation, heuristics and search algorithms. Marcus has also published over sixty peer reviewed works including a number of books, chapters for books, journal and conference articles.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 60,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -In recent years, there have been many studies in which tailored heuristics and meta-heuristics have been applied to specific optimisation problems. These algorithms can be extremely efficient, but may also lack generality. In contrast, the research outlined in this monograph focuses on building a general-purpose combinatorial optimisation problem solver using a variety of meta-heuristic algorithms including Simulated Annealing and Tabu Search. The work is novel because it uses a modelling environment in which the solution is stored in dense dynamic list structures, unlike a more conventional sparse vector notation. Because of this, it incorporates a number of neighbourhood search operators that are normally only found in tailored algorithms and it performs well on a range of problems. The general nature of the outlined system allows a model developer to rapidly prototype different problems. The results indicate that the system achieves good performance in terms of solution quality and runtime on a range of combinatorial problems.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 216 pp. Englisch. Artikel-Nr. 9783639267686
Anzahl: 2 verfügbar