Scale invariance has been found to empirically hold for a number of complex systems. The correct evaluation of the scaling exponents of a time series is fundamental to assess the real physical nature of a phenomenon. The traditional methods used to determine these scaling exponents are equivalent because they all rely on the numerical evaluation of the variance. However, two statistical classes of phenomena exist: fractal Brownian motions and Lévy flights and walks. In this book I present the theory and concepts of alternative fractal methods of time series analysis. I introduce a complementary method based on the Shannon entropy: the Diffusion Entropy Analysis (DEA). Using synthetic, solar, geophysical, sociological, physiological and biological data, I examine the properties of these methodologies and discuss the physical ambiguities of the variance-based methods. I argue that the variance-based algorithms should be used together with DEA to properly distinguish fractal Brownian motions from Lévy flight-walk classes of noises and complex processes. Computer C++ codes are provided for generating complex fractal noises and performing multiple fractal analyses of time series.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Nicola Scafetta, Ph. D.: Studied statistical physics and complex systems at the University of North Texas (USA). Laurea in Physics from the University of Pisa (Italy). Research scientist at Duke University, Durham NC.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,81 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783639257953_new
Anzahl: Mehr als 20 verfügbar