Verwandte Artikel zu Algorithms for Efficient Learning Systems: Online and...

Algorithms for Efficient Learning Systems: Online and Active Learning Approaches - Softcover

 
9783639210699: Algorithms for Efficient Learning Systems: Online and Active Learning Approaches

Inhaltsangabe

In the last few decades, we have been witnessing an information revolution that can be traced back to the invention of integrated circuits and computer chips. The widespread use of electronic devices and computing resources has tremendously increased the rate at which we generate, gather and store data in every fields of science, business and engineering. Machine learning takes center stage in our quest for analyzing this vast amount of data and extracting latent knowledge from it. However, as the datasets grow, increased running time and memory constraints may become prohibitive. Additionally, real-world data can have noise and imbalanced class distribution, which adversely affect the generalization accuracy of learning algorithms. In order to cope with these challenges, science in the 21st century requires a different set of computational techniques and algorithms. This book presents methodologies that address these issues with the goal of improving scalability, computational and data efficiency and generalization performance of machine learning algorithms in the context of online and active learning with a particular focus on Support Vector Machines.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

In the last few decades, we have been witnessing an information revolution that can be traced back to the invention of integrated circuits and computer chips. The widespread use of electronic devices and computing resources has tremendously increased the rate at which we generate, gather and store data in every fields of science, business and engineering. Machine learning takes center stage in our quest for analyzing this vast amount of data and extracting latent knowledge from it. However, as the datasets grow, increased running time and memory constraints may become prohibitive. Additionally, real-world data can have noise and imbalanced class distribution, which adversely affect the generalization accuracy of learning algorithms. In order to cope with these challenges, science in the 21st century requires a different set of computational techniques and algorithms. This book presents methodologies that address these issues with the goal of improving scalability, computational and data efficiency and generalization performance of machine learning algorithms in the context of online and active learning with a particular focus on Support Vector Machines.

Biografía del autor

Dr. ?eyda Ertekin received her Ph.D. in Computer Science and Engineering from the Pennsylvania State University ? University Park in U.S.A. She received her B.Sc. degree in Electrical and Electronics Engineering from Orta Do?u Teknik Üniversitesi, in Ankara, Turkey. She also holds an M.Sc. degree in Computer Science.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagVDM Verlag
  • Erscheinungsdatum2009
  • ISBN 10 3639210697
  • ISBN 13 9783639210699
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten160
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Algorithms for Efficient Learning Systems: Online and...

Foto des Verkäufers

Seyda Ertekin
Verlag: VDM Verlag Dr. Müller, 2009
ISBN 10: 3639210697 ISBN 13: 9783639210699
Neu Kartoniert / Broschiert

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. Artikel-Nr. 4967450

Verkäufer kontaktieren

Neu kaufen

EUR 46,32
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb